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Abstract
The primary focus of this paper is to present the comparative study that has been performed
using the different machine learning (ML) techniques or classifiers and their performance in
predicting, classifying, and detecting heart or cardiovascular disease and based on that, the
designed prediction algorithm for classifying and forecasting the occurrence and level of such
disease in patients based on their input data. This designed prediction algorithm is then deployed
in a production web application format which was developed using the Django web framework
and deployed to the AWS cloud hosting environment, to ease and coordinate the end-user in
interacting with the algorithm, by entering their risk factor values, so the prediction algorithm
can relay an accurately computed output.

Therefore, this paper will start by studying, analysing and comparing existing systems and
documentation in this problem domain in regard to machine learning and heart disease
screening/classification. Based on the summary of the literature review that reflects the current
status quo and limitations of ML-based heart disease prediction and classification systems, the
parameter selections for our study will be determined, including the specific ML algorithms to
design and develop, dataset preparation techniques, features utilised, data split ratios,
hyperparameter tuning methods to employ as well as evaluation metrics, and model selection
method to prioritise. It is found from the model comparisons and from testing the designed and
implemented ML models that alterations in these departments result in a change in the mentioned
evaluation metrics, and so the optimal model, producing the highest evaluation metric
performances, is sought after. Based on this, the implementation of our own machine learning
models to develop a predictive algorithm was performed and will be explored in more depth.
Conclusively, from the ML implementation process and model comparison performed, the
StackingClassifier model with the Random Forest model, with the best prediction accuracy
scores (86.9%), minimal error rates (0.311 mean square error), and acceptable testing times
(0.0522s) for web application deployment. After that, the development of the web app
component is discussed, which is used to house the chosen best ML model, making it easily
accessible for the end-user through their web browser, allowing them to input their physiological
information that are potential risk factors and be used for predicting and classifying their risk of
developing heart or cardiovascular disease. From the unit and integration testing performed, the
web application was implemented successfully and fulfils the requirements and system
functionalities of the requirements plan. Additionally, the hosted web application is accessible
through its domain name, https://heartassist.net/, which was registered and configured to point to
it, allowing the platform to be accessible on any device through the use of a web browser.

Therefore, the project consists of 2 main sections, which include the ML model construction and
the web app development for this project of developing an ML-based heart disease prediction
and classification system. The project source code is accessible through this onedrive link
(https://imailsunwayedu-my.sharepoint.com/:f:/g/personal/20017604_imail_sunway_edu_my/Er
_6WNkzLWBDt7RuLh9Rz5sBGXeO4fi5o4uf-M0szDS8Kg?e=CinA3w) or in this Github
repository (https://github.com/saurabhkovoor/heartassist). The instructions to execute the source
code are available in the README.md file.

Keywords: Heart Disease, Cardiovascular Disease (CVD), Coronary Artery Disease (CAD),
Artificial Intelligence, Machine Learning, Classification, Feature Selection
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1. Introduction
1.1 Motivation of the Project
Cardiovascular diseases (CVDs) or heart diseases (HDs) are the leading cause of deaths globally
with a mortality rate of 17.9 million each year according to the World Health Organisation,
WHO [1]. In fact, CVDs are especially prevalent in our country, Malaysia, regardless of race, as
Ischaemic heart diseases remain the principal cause of death, where in 2019 alone, 16,374
medical-certified deaths were recorded [2]. However, at its early stages, CVDs are indeed
preventable as patients should report to healthcare professionals to begin medicinal assistance
and counselling to prevent their condition from worsening. Besides that, CVDs can be prevented
through mitigating behavioural risk factors, including tobacco usage, unbalanced and unhealthy
dietary patterns, obesity, physical inactivity, and excessive intake of alcohol [3]. Overall, the
odds of surviving are favourable if the issue is discovered and diagnosed earlier on.

Despite that, according to the World Heart Federation, CVDs and HDs are especially prevalent in
low and middle-income countries, where over 75% of CVD-related deaths occur [4]. One of the
factors resulting in these monstrous numbers is that such cases are typically detected and treated
late. This is mainly attributed to the majority of the population in these areas not having the
financial capacity to be able to visit a healthcare professional to undergo these extensive tests.
Not only do they have to travel to these healthcare institutions multiple times, but they will also
have to spend a significant amount of time awaiting a clear analysis of their results from a
limited personnel of cardiologists and at times these tests can come at a burdening cost,
especially for patients in an area where healthcare is not subsidised or covered. On top of that,
even if one has the financial capacity, they will typically only undergo an annual checkup on
their heart health. Therefore, this expenditure for healthcare can be significant not just for the
patient, but for national and corporate budgets, providing treatment for these asymptomatic
diseases [5].

That being said, the traditional method of heart health screening involves the patient having to
visit a health institution, to undergo an electrocardiogram (ECG) test and meet with a heart
specialist or cardiologist. Plus, analysing the ECG data following the traditional method can be
laborious and time-consuming as a cardiologist would have to manually inspect and analyse the
ECG trace or the electrocardiogram for any abnormalities, before being able to provide a
diagnosis [6].

Even then, although it is possible for a patient to be saved by a doctor after a minor or major
attack, however, in many cases, a heart attack can still be fatal owing to the minimal amount of
time during an attack period rendering the patient incapable of informing anyone about this
emergency condition. Hence, these sudden attacks may lead to fatality before the patient is able
to reach a doctor for consulting [3]. Therefore, precautionary steps before the occurrence of heart
attacks should be bolstered.

Therefore, many believe in the future of the healthcare sector, the goal should be to reduce the
number of cases to treat not only once heart diseases have developed but instead to prevent its
occurrence earlier on through data and algorithms. For this, biometric devices can be utilised that
are capable of generating a multitude of data points by monitoring bodily signals or real-time
biomarkers, such as heart rate variability, nutrition analytes, temperature, etc. For instance,
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wearable sensory technology that is becoming ever more easily accessible can be utilised, such
as a smartwatch, sleep ring, heart monitor, etc. Thus, in the future, such technologies can be
capable of continuous and constant tracking of the heart patterns and make more accurate and
representative health predictions. From there, classification systems that utilise machine learning
models can be applied to effectively process these large amounts of data to provide more
accurate output or diagnoses that are backed by the data.

Therefore, as prevention is better than cure, this places high importance on developing prediction
systems that can detect the onset of cardiovascular risk. Hence, the general purpose of this
project is to develop a prediction algorithm for heart disease based on machine learning
techniques, as seen in section 3.4.5. This project will help us identify key features or factors that
are statistically significant to build these predictive models as well as to understand which
machine learning algorithm/model is best suited for this application domain in providing the best
performance or highest accuracy.

All in all, this project aims to contribute to the existing development of heart disease prediction
systems by incorporating advanced machine learning techniques such as neural networks as well
as testing along with a well-curated dataset and introducing hybrid data mining models to further
combine other patient medical information that might be statistically significant and provide
improved diagnosis and treatment. These benchmark algorithms are independently verified for
their performance based on the set of the predetermined evaluation metrics, as seen in section
3.4.6. From there, we can determine the best-performing model that relates with this problem
domain. Also, by making the technology more easily accessible, it can ease the technology’s
deployment for general public usage, so people can get access to information and diagnosis
regarding their cardiovascular health quicker.

1.2 Problem Statement
By now, it is clear that there exists limitations in the traditional procedure of heart disease
screening that we aim to alleviate by providing an improved solution with the development of
this prediction system. Hence, this section highlights some problems that we can identify, which
will help us pinpoint the specific goals and objectives the system should accomplish:

Firstly, as explored earlier, the traditional protocol of diagnosing heart disease can be rather
extensive and time-consuming, which can especially be taxing on the limited personnel of
cardiologists or heart specialists having to supervise or monitor the process. The extensive data
in the ECG report would have to be manually inspected and analysed by a heart specialist in
order to make valid inferences [6]. Along with that, multiple checkups and tests have to be
scheduled to make a full diagnosis, which can not only be time-intensive but financially and
resource-dependent as well.

Additionally, typically, at the first stage of the heart disease screening process, the diagnosis of
the disease is not conducted with the help of computer-aided systems and the final decision or
verdict is made through the analysis of the doctors. Thus, not only does this slow the process,
this can introduce the risk or potential of human error to the diagnosis of the patients. These
results or diagnoses can be affected by the conditions, education taken, working conditions, and
the number of patients per physician along with a number of other factors [7]. Plus, these
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traditional methods are mostly reactive and not precautionary, in that they examine a patient’s
medical history, symptoms and physical reports and only provides support after identifying the
occurrence of heart disease than utilising the large amount of data points generated of patient
data to make accurate predictions.

Plus, generally after the event of such attacks, there needs to be 24 hours of monitoring the
patient’s health at home, to diagnose any further fatal physiological conditions or symptoms [9].
A hospital environment is equipped with facilities that allow for this constant monitoring of
critical condition patients, but after they are discharged, they are no longer part of the direct
supervision. So, patients require this supervision to avoid the risks of undesired complications.

Looking at the current status quo, another reason ML is not widely or fully incorporated into
medical screening applications is due to the lack of data mining and the utilisation of digital
patient records and AI and computer systems in the healthcare or biomedical department not
being so common, accessible or refined. In a traditional medical institutional environment
medical data is often stored in the form of handwritten paper-based records or perhaps if they are
more advanced, in computerised systems. However, even then, they are not typically utilised for
real-world analysis [10]. Nevertheless, this data can be harnessed for predicting and analysing
various diseases, including cancer, diabetes, and in this case, HDs. Despite that, the healthcare
industry generates a large number of datapoints about patients' medical and physiological
conditions daily, but most of it is not analysed thoroughly, raising the need for tools to extract
these critical knowledge from the dataset for the clinical classification and prediction of disease
[11]. So, with the inception of Electronic Medical Records (EMR), this has further assisted
medical professionals and institutions transition to an electronic/digital management of patient
records. Having this vast digital storage of data, assists with simplifying the acquisition, analysis,
processing of these medical data to provide more accurate and valid inferences, predictions and
classifications [11]. By having a centralised and easily accessible data source, this benefits the
research division, where they can discover previously unknown patterns in the dataset to further
refine the healthcare service provided. This data availability can assist our study and similar
studies in the future, where these crucial data can be useful for further training and testing of the
ML models to be even more accurate as well as development of novel computational techniques
and various domain-specific applications, especially considering that the amount of local datasets
and even ones that are open-source, is limited in numbers. Thus, by having a dataset that is
representative of the local population, this can be effective to determine if there are location or
social determinants or predictors for the occurrence of heart disease in patients.

It is clear that the medical field involves extensive manual and repetitive tasks to read and
analyse the large amount of data points even for each patient let alone for all heart patients in a
hospital. Hence, the diagnosis of disease is truly an intricate part of the medical field [12]. This
further increases the demand for ML-based prediction and classification systems that can analyse
the large amount of data and support the medical professional’s decision making process. This
can be achieved through the combination of data mining or sourcing the large amount of digital
patient data that is available in the medical field and the development of ML algorithms to make
intelligent decision-making programs. These big data available in health institution databases
when correctly processed, can give rise to valid inferences and assist practitioners in making
predictions and diagnoses.
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Additionally, the technology was not advanced enough to make safe, accurate and decisive
verdicts or diagnoses that can concern human health. So, even at its early stages of deployment, a
heart specialist would be required to monitor and ensure the diagnoses are just and acceptable
[9]. Nevertheless, as mentioned before, such technologies can certainly supplement the doctor’s
decision-making process, by processing large amounts of patient data to give a more simple and
understandable output. Hence, the human factor will not be eliminated in the decision-making
process, but instead, the human factor will become even more effective and efficient as the entire
process is accelerated and accurate decisions are made based on data, hence minimising human
errors in the process. On that note, continuous development and research into this field should be
conducted to further improve the state of the technology in terms of its performance (metrics)
and easy acceptance by the target user base.

1.3 Project Goal
The primary aim or goal of this project is to design and develop a heart disease prediction
algorithm using a machine learning model that produces the best performance based on our
comparative study of different ML algorithms.

1.4 Project Objectives
In an effort to overcome the problems stated above, based on this generalised goal statement, we
can further divide this into more specific objectives that we aim to accomplish by the end of this
project. Thus, this section will give the first look at the system's capabilities:

1. To perform a comparative study and determine the ML algorithm (2.1.1-2.1.9) that
provides the best performance in terms of the chosen evaluation metrics as stated in 3.4.6,
for predicting the onset of heart disease based on ECG data input.

2. To study the effect of parameters changes on the model's performance, such as the dataset
utilised, features/attributes used, data preparation and cleaning tasks, data split ratios,
hyperparameter tuning, and the evaluation metric and model selection method prioritised.

3. To design and develop the ML model for effectively and accurately predicting and
diagnosing heart disease based on patients’ ECG data input. The proposed system will
eliminate the need to conduct various testing and analysis of heart disease as in the
traditional mode, and instead support and supplement the heart specialist’s
decision-making process in their diagnosis, simultaneously mitigating the extensive time
for checkups. The system shall accept a singleton query and return/display a clear output
of the HD presence and risk level.

4. To develop a production-ready web app using the Django python framework, along with
other web tools and technologies further explained in section 3.6, that integrates the
designed optimal ML model with a user interface (UI) that is easily accessible through a
web browser by the end-user.

1.5 Project Deliverables
This project will be delivered or deployed in the form of a production-ready web application that
is integrated with the heart disease prediction algorithm that is developed using the chosen
best-performing machine learning model. By deploying it as a lightweight web application, the
prediction algorithm will be more easily accessible and easy to manoeuvre by the general public
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through a web browser that even the most basic computers or smartphones can load, which is
becoming ever more accessible for communities around the world.

1.6 Project Scope
The scope of this project involves: 1) Determining the dataset to utilise and data acquisition 2)
Preparing, understanding and preprocessing the dataset 3) Employing feature engineering and
selection methods to select relevant features that strongly correlate with the target attribute and
improve prediction accuracy 4) Developing and implementing hyperparameter tuning methods 5)
Designing and implementing the ML models that are to be compared in terms of the
predetermined evaluation metrics 6) Measuring and comparing the performance of the ML
models in detecting the onset, presence, and level of heart disease using the testing dataset 7)
Model selection to determine the best performing model based on various factors 8) Developing
a web application to deploy the chosen best ML algorithm for this problem domain. Therefore,
any device (mobile device, desktop) with a web browser along with an Internet connection is
required to access the application and its functionalities.

Thus, the development of this project can be seen to be in two parts, which include the
implementation of ML to determine the best-performing ML model for this problem domain and
then the development of a web app component that will integrate the chosen ML model into an
easily accessible website format which users can access using a web browser.

Hence, the bulk of the project is in the implementation of the ML component to be utilised. The
first part of the ML implementation involves acquiring the data from the chosen dataset.

Then, understanding the dataset and its distribution to aid us in our implementation of the ML
models. We can also determine whether the dataset has sufficient records and data to train our
model, else more can be incorporated in the previous data acquisition stage. For data
understanding, a description of the dataset is generated, where information such as mean,
median, mode, etc. are studied to further understand the distribution and to determine the
necessary preprocessing and cleaning steps to perform. Hence, the following step is to perform
data preprocessing where the dataset is cleaned using the appropriate methods determined from
understanding the dataset and its faults. This can ensure that no noise, outliers, or other faults in
the dataset will affect the building of the ML models.

For the next stage, we perform feature engineering or selection where only relevant features are
considered for building the ML models. We can determine the appropriate features to utilise from
viewing the features' correlations with each other and the target data using the univariate and
multivariate plots from the data understanding stage.

Subsequently, hyperparameter optimisation methods are explored and developed to further
improve the predictive performance of the prospective ML algorithms.

From there, we can partition the data into training and validation datasets. For this, different split
ratios will be studied to determine the performance of the model at different split ratios (e.g.,
50:50, 60:40, etc.) and to find the most optimal combination.
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The next part involves the development of the machine learning model algorithms as well as
designing hybrid models to test whether a combination of ML methods produce better
performance for this problem domain. The ML algorithms that will be considered are explained
in sections 2.1.1 to 2.1.9 and section 3.4.5.

The following part involves the experimental testing and results phase, where we are evaluating
and comparing the performance of the ML models that were developed in the previous part. The
evaluation metrics that were considered are explained in section 3.4.6. This section is crucial to
determine the best-performing ML model that is to be integrated in the final system.

After that, based on the obtained performance and evaluation results from the previous stage,
model selection is performed to determine the best-performing model. Simultaneously, at this
stage, there are other considerations that are maintained when choosing the ideal model, for
example, based on the principle of parsimony, for multiple models with the same performance
metrics, the model with the least complexity is chosen.

The final part involves the development of the web app where the ML model will be integrated
and deployed in this environment where it can be easily accessible for the end-user, along with
the appropriate system testing methods to ensure the final system is functional and fulfils initial
requirements and expectations.

Some out-of-scope aspects of this project include, the usability and speed of the web application
will not be studied or evaluated in this project due to time and resource constraints and as it is
only a secondary functionality in this project. There is also a personnel limitation in terms of the
number of testers to evaluate the usability of the system. This is also because the application will
not be published or released for real-world usage as mentioned in the earlier limitation. Thus,
usability tests, such as user acceptance testing (UAT), will not be performed.

Additionally, it is worth noting and emphasising that the final developed system and project is
only for educational and research purposes to understand the application, strengths and
weaknesses of ML models and the features that are significant for this problem domain of heart
disease prediction/classification. So, it will certainly need clearances and approvals from the
right departments before it can be utilised for real-world commercial scenarios or making final
definitive verdicts, especially considering this project is concerned with the critical aspect of
human health. The role of a doctor, cardiologist or healthcare professional is still prominent and
necessary to make the final verdict on a patient’s heart health, although we believe that our
system aims to supplement their decision-making process by analysing large amounts of data to
identify patterns and supplement the diagnosis. So, this project is also intended to help us better
learn the differences, performance, and application of different ML models and feature selection
techniques.
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2. Literature Review
2.1 Machine Learning, Prediction, Classification and Data Mining
The core topic of this project is classification and prediction which utilises machine learning
techniques. Machine learning (ML) is considered a subset model or a subdivision of the more
general artificial intelligence (AI) network that utilises complex algorithms and deep learning
neural networks [13]. ML enables a program to iteratively and automatically learn or “train”
through the input of data and improves the results based on the previous experiences and
knowledge (heuristics) [14]. So, this training is based on the derived knowledge from the
database, which allows the model to make predictions and classifications. Plus, as mentioned
earlier in the problem statement, with the blooming big data sector in the medical field, there is a
larger amount of data that can be used to train the models and ameliorate the performance and
accuracy of the analytical tools used for earlier detection of these CVDs.

In accordance with that, prediction and classification is an area where machine learning is
employed. Classification is a method in which ML algorithms are trained to assign class labels to
cases for a particular problem set. Hence, it is a predictive modelling of any problem domain
with labelled classes to be predicted based on a dataset [14]. Thus, it distributes data between
predefined classes according to the specified rules. Therefore, it is commonly associated with
prediction tasks, as the aim is typically to forecast or classify the target value from the possible
outcomes, presence of heart disease, based on given input features.

Along with that, data mining is utilised with ML, as a discovery method for sourcing and
analysing big data or usable information from raw datasets and finding important information
from this enormous collection of data. Data mining is considered a non-trivial extraction of
implicit and potentially helpful information about data that was formerly unrevealed [15]. It
couples an effective data collection or warehousing method along with data processing or the
analysis of patterns in the large batches of raw data. Hence, this can be influential for exploratory
and illustration of patterns to make intelligent business-related decisions. In this case, as the
medical field is one which generates large amounts of complex data points daily concerning
disease diagnosis and patient physiological and medical information, data mining examines large
amount of data and sets a certain outcome and provides techniques to discover unseen patterns or
similarities in the data distribution and draw vital conclusions to make valid inferences and
improve clinical decision support.

In the field of ML, it is generally understood that no single model is more accurate to its
counterparts and it depends on the problem domain that is being studied. So, ML provides
various classification algorithms to compute the probability of a patient possessing HD. Apart
from applying singular ML algorithms on a dataset, a hybrid model can also be developed which
is a incorporation or ensemble of several classification and feature selection techniques in a
unified single model, in hopes of increasing accuracy and providing better prediction
performance [14]. Thus, if the proper combination of ML algorithms is assembled, the hybrid
model can provide favourable evaluation results, such as enhanced accuracy. Therefore, we aim
to study the different ML models that can be utilised to make accurate predictions. Through the
use of ML models, analytical models can be created aiding us to process large amounts of data
and identifying earlier unknown patterns and trends in the dataset and utilising the attained
information.
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As the dataset we are working with possesses clear known labels where it has the corresponding
correct outputs, this learning is “supervised”, as opposed to “unsupervised” learning where
instances are unlabeled. This form of ML is highly robust, applying for various robusts and
extremely effective for certain problem domains, where the correct outputs are labelled.

The following is a general overview of each machine learning model that will be implemented or
explored in our study. This is to help us understand the workings of each model and assist us in
its implementation. Each model will be first trained or fitted with a portion of the dataset known
as the “training set”, then validated with the “validation set”, which is separated and set aside
currently as “unseen data” to evaluate the algorithm performance.

2.1.1 Simple Logistic Regression
Logistic regression is a simple parametric supervised ML classification algorithm from the study
of statistics that is utilised to predict the chance for a target variable to occur and performs binary
classification where values are assigned to either of two classes. Similar to linear regression, the
aim is to compute the coefficient values for the input variables, however, logistic regression
transforms the variables into a dichotomous target value in that it can possess one of two possible
classes, either 0 for failure or 1 for success [16]. It is a linear model used for finding solutions to
binary and linear classification problem domains by predicting the likelihood of a
categorical-dependent variable based on a given set of determinants or independent variables
where the response variable can be of a binary nature or having continuous explanatory
variables.

In an ideal situation for logistic regression, the input features are unrelated to the output variable
and the input features correlating to each other are eliminated

Additionally unlike linear regression, it utilises the logistic or sigmoid function for computing
the results between a dichotomous response variable between 0 and 1, which can be defined as:

𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐 (𝑛) =   1

1 + 𝑒 −(𝑛)

Here, n denotes the linear model’s output trained with the logistic regression model to produce a
value between 0 and 1. Also, as the output of the above equation is between 0 and 1, a threshold
needs to be set to ensure the output is assigned to either of 2 classes, 0 or 1. Hence, for our study,
we set the threshold value to 0.5 so, if the output of the logistic function is more than 0.5 the
responding variable will be transformed to 1 (presence of HD) and for output less than 0.5 the
responding variable will be 0 (absence of HD).

Aside from a binary target value, logistic regression can also produce a dependent variable in the
form of a multinomial or ordinal value. A multinomial value is one where the responding
variable can be of three or more unordered classes, such as “Type 1”, “Type 2”, and “Type 3”. As
for ordinal, the responding variable can possess three or more possible ordered classes that have
quantitative significance, such as “bad”, “moderate”, and “good” along with their score values
such as “0”, “1” and “2”.
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2.1.2 Decision Tree
A decision tree is a non-parametric supervised ML model or classifier that possesses a tree and
flowchart-like graph structure with nodes containing rules for classifying instances/records to its
categorical target class (0 for absence of HD or 1 for presence of HD) based on its attribute
values. Hence, at each node is a variable or a feature in an instance used for classifying and
subsequently the branches represent the values that the node can possess or the outcome of the
test. Thus, the rule can split a tree into two or more analogous sets based on the most important
indicators [13].

So, the classification begins at the root node and then sorted based on its attribute values. The
attribute that best distinguishes a dataset is designated towards the root node. The internal nodes
are other decision-making components of the decision tree that represent the defined
characteristics of a dataset which collectively make up a decision depending on various
algorithms and to traverse the following nodes. The traversal stops or the split process halts when
a leaf node is reached where the predetermined criteria is met and the node does not contain any
more branches or child nodes. The path spanning from the root to the leaf contains classification
rules.

Looking at it more simply, a decision tree asks a question at every node, at which the tree is split
into subtrees based on the response or values available (Yes, No). This data can be either
categorical (e.g. Yes, No) or numerical (e.g., >50 and <50). Within the topic of decision trees,
there are different types that can be employed, which include CART, C4.5, CHAID, J48, ID3
among others.

Overall, decision trees can be more accurate compared to other models as it studies a dataset in a
tree-like pattern. Nevertheless, the downside is, there is a possibility of the dataset being
overclassified and only one feature being evaluated at a time for decision-making.

2.1.3 Naive Bayes
The naive bayes model is a supervised ML algorithm and a simple, probabilistic, and statistical
classifier based on Bayes’ theorem. This model is considered “naive” as it assumes that values of
a certain predictor are independent of the values of another and there exists no correlation,
provided the class variable. So, changes in one determinant will not affect another, thus making it
suitable for large datasets. Hence, every determinant is required to independently contribute to
the probability value to maximise it [17]. This theorem is a mathematical concept that is utilised
to acquire probability values and is applied for many real-world applications.

It is associated with two types of probabilities, that can be computed based on the training
dataset directly:

- The probability of all classes
- The conditional probability for all classes, given each x value

The following is Bayes’ theorem equation:
P(X|Y) = P(Y|X) * P(X)/P(Y)

P(X|Y)=P(X)∗P(Y/X)/P(Y) , where P(Y|X)=P(X∩Y)/P(X)
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Here, x represents the data tuple while C is the class, given that P(X) is constant for every class.
Based on the above formula, the Bayesian classifier computes the conditional probability of a
record belonging to each class and the instance is classified as the class possessing the largest
conditional probability. When the probability values are computed, the probabilistic model is
applied to make predictions with the novel data utilising the Naive Bayes theorem. If the data
possesses a real value, it likely assumes a Gaussian or normal distribution that mimics that of a
bell-shaped curve. This allows a simple estimation of the probability values.

The benefit of this model is that even though it assumes an unrealistic condition where attribute
values are conditionally independent, it functions effectively for vast datasets where the
condition is assumed and applied. So, it typically has a minimal error rate, however, this may not
be true in all scenarios. Inaccuracies may arise due to assumptions owing to class conditional
independence and the absence of available probability data.

2.1.4 Random Forest
Random forest is a supervised ML model, and it is considered an ensemble model providing the
function of ensemble learning (sometimes termed nearest neighbour predictor). Structurally, it
consists of multiple regression trees constructed during the training time, thus giving its name
“forest” and it trains each one with a slightly different randomly selected set of training dataset
records where it splits the nodes at every tree, taking into consideration only a small number of
features [18]. From the significant number of decision trees, the tree with the most upvoted class
prediction or the largest mode value becomes the predictor for the model. Alternatively, the last
prediction of the model is computed by averaging the predictions of every tree to find a natural
balance between the two extremes, thus enhancing the overall accuracy for the particular hidden
data and reducing high variance and bias [19].

The advantage of a random forest classifier is that it provides high accuracy while requiring
relatively lesser training time. Additionally, it decreases the likelihood of overfitting the ML
model owing to its utilisation of multiple decision trees. It performs well for overcoming missing
values, however, can be slow for obtaining predictions as it necessitates large data sets and a
significant number of trees, and the results are unaccountable.

2.1.5 Support-Vector Machine
SVM is a supervised ML model that classifies records through finding an optimal hyperplane
distinguishing the classes on multidimensional spaces. This hyperplane is iteratively created by
the SVM model to reduce error. So, the data points are plotted in the n-dimensional space with
each feature’s values being the coordinate value and the classification is conducted based on the
hyperplane that distinguishes the two data classes [20]. Subsequently, the features of new
instances are used to predict the class in which subsequent instances should be classified.

Overall, the aim of SVM is to separate the dataset or input points into classes and search for the
maximum marginal hyperplane (MMH) or the distance between the hyperplane and the two
nearest adjacent data points from the particular classes. The line that has the largest marginal
difference to distinguish the two classes is considered the optimal hyperplane as it can
distinguish the two classes better. This ensures to minimise the risk of misclassification. The
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points that are used are called support vectors, thus giving the name support vector machine, as
they support or define the hyperplane. For the implementation, an optimisation algorithm is
applied to compute the parameter values that maximise this margin.

There are different forms of SVM, where it constructs the knowledge-based model with different
kernels, either utilising a linear kernel, radial basis function (RBF) kernel, sigmoid and
polynomial kernel. Thus, this allows for hyperplanes to be constructed for non-linear data points
as well.

Different tools can be used to implement SVM, such as the scikit-learn library, MATLAB and
LIBSVM.

2.1.6 K-Nearest Neighbour (KNN)
The K-Nearest Neighbour (KNN) model is a simple non-parametric algorithm that does not have
assumptions about the underlying data. It is based on the principle of Euclidean distance where
the records in a dataset are in close proximity to each other and possess homogenous properties.
Hence, if the records are assigned a classification label, the unclassified record’s label value can
be obtained by observing the closest adjacent node/neighbours class. It stores available cases and
classifies new records based on the closest majority neighbours, for instance, based on the
euclidean distance function. So, it assumes that identical classes exist in close proximity to each
other as these entities are similar and must exist together [21]. In the name KNN, the K lettering
represents neighbourhood cardinality or the number of nearest neighbours close to a new
datapoint for assigning the class to the new point. So, for when K is equivalent to 1, 2, or 3, it
will either choose one, two, or three of the closest neighbouring data points to determine the
class to assign the record.

It has assumptions such as the data possessing noise, is labelled, and should include relevant
attributes. Nonetheless, before implementing KNN on a dataset, the data should be preprocessed
to clean noise and outliers as well as to normalise the variables to prevent high value variables
causing the model to be biassed. Thus, it can be seen as a grouping method that considers the
distance between a data point and the coordinates, and its neighbours [21]. The distance is
calculated using the following euclidean distance function and the neighbours are determined
from the datapoint and located in the area that is closest to the neighbouring points:

𝑝 (𝑥,  𝑥') =  |𝑥 −  𝑥'| =  
𝑘 = 0

𝑛

∑ (𝑥𝑖 −  𝑥𝑖') 2

Here xi and xi’ represent two vectors from an initial node, whereas n represents the size for the
n-dimensional space.

The downside to KNN is that it can take a noticeable amount of time to be trained with large
datasets and a dataset with noise or irrelevant attributes can influence its accuracy and cause bias.
It is considered a “lazy” learner in that it is an instance-based learner that depends on the
distance that does not learn any classification rule. Nonetheless, it is simple to understand as it
has a non-complex structure and is versatile enough to be applied to various practical problem
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domains, including for classification, regression and search problems. It has been applied in
statistical estimation and pattern recognition applications.

2.1.7 Artificial Neural Network (ANN)
Artificial neural networks are also known as multilayer perceptrons, and they are considered
biologically inspired in that they aim to replicate a human learning and decision-making
mechanism, and it is able to model extremely complex non-linear functions and statistical data.
Data that is inputted into these networks affects the structure of the ANN as a neural network
constantly adapts to changes in the data and learns in a sense-based manner based on the input
and output, for the current and subsequent stages [13]. Therefore, ANNs are effective tools for
machine learning and discovering complex and ambiguous patterns to train itself to recognise
them. Structurally, ANNs have interconnected layers and the networks themselves are fairly
simply mathematical models that can improve existing data analysis technologies.

It is the first form of neural network (NN) models that will be studied and implemented.
Generally, neural networks are a series of algorithms that aims to discover or match underlying
hidden relations in a dataset through the process of replicating the thought pattern of the human
brain [22]. Hence, as the name “neural” suggests, these are brain-oriented systems that are
intended to replicate the way in which humans learn and make decisions.

Neural networks typically comprise three layers, the input, output and hidden layer and consist of
interconnected nodes within the layers. Most of the time, this hidden layer consists of units that
are capable of transforming the input data into a pattern in which the output layer can alter. In
neural networks there are neurons which are essentially mathematical functions that accumulate
and classify information based on the specific architecture. NNs can be of single or multiple
layers where jingle layer NNs possess nodes which are perceptrons, similar to a multiple linear
regression model [22]. These perceptrons relay the signals from the multiple linear regression to
an activation function that is likely non-linear. In a multi-layered perceptron, these perceptrons
are ordered in interconnected layers, where the input layer collects the input patterns and the
output layer possesses classifications or output signals to which input patterns may map. NNs are
akin to statistical methods such as curve fitting and regression analysis [23]. They have
especially become a crucial aspect of AI owing to the inception of the new methodology, known
as backpropagation where networks can adjust their hidden layers of neurons in scenarios where
the output does not correspond with the developer’s expectation.

2.1.8 Recurrent Neural Network (RNN)
Recurrent neural networks (RNN) are a robust and powerful form of ANN that utilises sequential
and time-series data and is considered a type of deep learning algorithm. Thus, it is commonly
utilised for ordinal or temporal problem domains, namely for language translation, natural
language processing (NLP), etc. In RNNs the connections between the nodes form a directed or
undirected graph along a temporal sequence, thus displaying temporal dynamic behaviour. So,
these sequential data ate ordered data where related nodes follow one another [24]. Hence, it is
akin to a feed-forward NN, where information moves straight through a network without
traversing a node twice.
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As with all NNs, it requires a training dataset to learn and improve its model. However, the way
it differs from ANN or any other form of NN is that it possesses internal memory based on prior
input data that affects the current input and output. Traditional deep NN assumes that these
input/output values are independent of each other, however, for RNN the output is dependent on
the initial elements in a sequence [25].

A noteworthy issue of RNNs is with its gradients. A gradient in this case is a partial derivative in
regards to its inputs which measures the change in the output of a function when a change is
applied to the input [24]. So, envisioning the gradient as a slope of a function, at high gradients
the slope is steeper and this represents a faster time in which the model learns and conversely, if
the slope is zero, the model’s learning halts. This gradient value measures the change in every
weight point when there is a change in the error rate. So, in the exploding gradient problem, the
model assigns an unjust high importance to the weight value. Whereas for the vanishing gradient
problem, the gradient values are too low, where the model learning halts or requires an extensive
computation time [24].

The benefits of employing an RNN model include its ability to process sequence data, input of
varying length and that it stores and utilises prior information in its internal memory to determine
a proper output. Nonetheless, its disadvantages include the computation time being slow, the
network not being able to consider future inputs in decision-making as well as the risk of the
vanishing and exploding gradient problem.

Therefore, after careful consideration and reevaluating the model, its purpose, structure and
operation, it was found that it is not suitable to be studied for this problem domain of supervised
classification, as it is more suited towards applications which perform reinforcement learning or
unsupervised learning where the target attribute is absent. Thus, this model was eventually left
out of the ML implementation due to these reasons.

2.1.9 K-Means Clustering
The k-means clustering model is an unsupervised ML model that groups or aggregates unlabeled
data points into groups of varying clusters because of certain similarities and there is not a target
variable and the goal is to highlight any patterns in the data, making them more evident [26]. The
K lettering represents the number of clusters that are to be formed through the process, so if K is
defined to be 5 there will be five groups or clusters. Besides designating the number of clusters,
this model can automatically learn or find a suitable number of clusters on its own without the
information being declared or inputted [14]. So, this makes the model semi-supervised.

Therefore, the model identifies the number of clusters then allocates the data to the nearest
cluster/centroid, while aiming to keep the clusters as minute as possible.Then the model averages
the data to find the centroid, as stated in its name, “means”. Iteratively, the model calculates this
optimal position of the centroid, until the centroids are stabilised or the values remain constant
after clustering is successful or a predefined number of iterations is performed [26].

The benefit of this model is that it is effective for datasets with many records. However, its
performance is not as competitive compared to other models or clustering techniques since
variations in the input data can cause high variance in the output.
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2.2 Cardiovascular Diseases (CVDs) and Heart Diseases (HD)
The heart is among the most vital organs in the entire human anatomy, serving the crucial
function as a central part of the circulatory and cardiovascular system of rhythmically pumping
blood all over the body to transport oxygen, nutrients, and hormones to body cells and for
eliminating waste products [27]. Thus, it is clear to see that when it fails to pump blood correctly
and effectively, this can lead to the human body encountering fatal conditions.

Therefore, cardiovascular or heart diseases can be classified as any disorder or abnormalities of
the heart. So, heart disease is an umbrella term consisting of a range of conditions that can affect
the human heart whether it is concerned with vessel diseases (coronary artery disease, and
arrhythmias) and heart defects one is born with with congenital heart defects, as well as others.
[27]. The term heart disease is also used interchangeably with cardiovascular disease since the
heart is the central component of the cardiovascular system. It describes any pathologies that
change or negatively impact the function or structure of the circulatory system [28].
Nevertheless, CVD is more concerned with blood vessel conditions where they are blocked or
narrowed leading to heart attacks, strokes or angina (chest pain) [27]. Generally, some common
determinants for heart attacks that are used as measurable indicators/metrics include blood
pressure, cholesterol and pulse rate [29]. Heart attacks are the main form of heart disease where
it occurs when one or more of the coronary arteries become blocked.

Hence, the following are some of the reasons for heart disease to develop and occur:
● All or part of the heart is experiencing damage
● Blood vessels from and to the heart are damaged or affected
● Hardening of the arteries (atherosclerosis)
● Weakening of the heart muscles (cardiomyopathy)
● Heart defects present from birth (congenital heart defects)
● There is insufficient supply of oxygen and nutrients reaching the heart
● Bacterial, viral or parasitic infections of the heart.
● Damage to the heart valves (rheumatic heart disease)
● Rhythmic problems with the heart (arrhythmia)

Factors of Heart Disease
The underlying factors may vary depending on the disease. Nonetheless, it is estimated that
dietary risk factors are associated with 53% of CVD deaths [3]. Other strong physiological
factors and habitual predictors include high blood pressure, smoking, diabetes mellitus, lack of
exercise, obesity, hypertension, stress, high blood cholesterol, pre-existing heart problems, poor
diet, excessive alcohol and caffeine consumption, and poor sleep, among other things [30]. High
blood pressure is estimated to account for approximately 13% of CVD deaths, while tobacco
accounts for 9%, diabetes 6%, lack of exercise 6%, and obesity 5% [1]. Genetics can also play a
role in one’s likelihood of developing heart problems [28].

Preventative Measures
However, it is estimated that up to 90% of CVD may be preventable if the established risk
factors are avoided [3]. So typically, cardiovascular disease is treatable with initial treatment
primarily focused on diet and lifestyle interventions and involves improving risk factors through
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healthy eating, exercise, avoidance of tobacco smoke and limiting alcohol intake. Treating risk
factors, such as high blood pressure, blood lipids and diabetes is also beneficial. There are also
surgical or procedural interventions that can save someone's life or prolong it. For heart valve
problems, a person could have surgery to replace the valve [28]. For arrhythmias, a pacemaker
can be put in place to help reduce abnormal heart rhythms and for a heart attack, there are
multiple options two of these are a coronary angioplasty and a coronary artery bypass surgery
[27]. Medication is also provided to treat, cure and control a patient’s heart disease, for example,
this includes the prescription of Anticoagulants, Angiotensin-converting enzyme inhibitors,
Angiotensin II receptor blockers, and Beta-blockers, amongst others [30]. A cardiologist will
work with the individual to find a suitable option.

On that note, this poses a crucial need to monitor high-risk patients’ vitals. For this, more
sophisticated technology, especially sensory technology can be employed along with machine
learning models to frequently and efficiently collect and process patient’s medical information, to
make more well-informed and quicker decisions to ensure one’s heart health is maintained or for
cardiac healing and rehabilitation purposes.

For this purpose, it is found that the application of ML and AI for heart disease classification and
prediction has been consistently more accurate and displaying better performances than with
manual classification [7]. There is additional evidence to suggest that simply providing people
with a cardiovascular disease risk score may reduce cardiovascular disease risk factors by a small
amount compared to usual care [9]. Errors in the clinical results otherwise can lead to
misdiagnosis that can lead to fatalities. Thus, computer-based support systems can support the
decision-making process of healthcare professions to achieve the correct and cost-effective
measures.

Overall it is clear that the efficient, accurate and early discovery and medical diagnosis of the
heart problem earlier on, can allow for medical intervention to take place and preventive
procedures to be conducted, to avoid complications, increase the patient’s likelihood of
recovering from the CVDs and reduce the fatality rate.

2.3 Electrocardiography (ECG)
This section describes some key information about electrocardiography and the output data that
it produces in that it can be useful to our study as it is a commonly used determinant or
measurable indicator for determining a patient’s likelihood of developing heart problems. It can
be useful to our study and implementation of the heart disease prediction system, for
understanding a key determinant that can possibly be utilised as an input feature in our model
and prospective system:

By definition, electrocardiography (ECG) is the process in which an electrocardiogram (ECG or
EKG) is created, which represents the electrical activity of the human heart in an amplified
recording format [31]. This recording of the heart’s electrical activity is obtained through placing
electrodes on the patient’s skin, and is subsequently plotted in a voltage-time graph. The purpose
of these electrodes is to perceive minute electric changes as a result of the depolarisation and
polarisation of the heart muscles at every cardiac cycle or heartbeat [32]. Hence, alterations to
the normal ECG pattern can be pathological and of clinical significance, indicating that the
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patient might be experiencing any cardiac abnormalities, rhythm disturbances, insufficient
coronary artery blood flow, or electrolyte disturbances.

These electrodes detect the small electrical changes that are a consequence of cardiac muscle
depolarization followed by repolarization during each cardiac cycle (heartbeat). Changes in the
normal ECG pattern occur in numerous cardiac abnormalities, including cardiac rhythm
disturbances (e.g., atrial fibrillation), inadequate coronary artery blood flow (e.g., myocardial
ischemia and myocardial infarction), and electrolyte disturbances (e.g., hypokalemia and
hyperkalemia) [31]. Traditionally, a 12-lead ECG is performed on patients, by attaching ten
electrodes to their limbs as well as on the surface of the chest. The overall magnitude and the
direction of the heart’s electrical depolarisation is recorded for every heartbeat [33].
Nevertheless, in the modern day, this technology is becoming even more accessible as its
deployed in more consumer sensory gadgets such as certain smart watch models (e.g., Apple
Watch Series 4, 5, 6, 7).

From viewing the ECG we can see a few of the main components in each heartbeat wave or
cardiac cycle and the following describe what each segment represents:

● P wave: The depolarisation of the atria (upper two compartments of the heart)
● QRS complex: The depolarisation of the ventricles (bottom two compartments of the

heart)
● T wave: The repolarisation of the ventricles
● U wave: The repolarisation of the papillary muscles, generally not observed and ignored

Figure 1: Main components of a cardiac cycle recorded in an ECG [33]

Overall, to a heart specialist or a trained ECG clinician, these raw data from the ECG can be
analysed to relay vast information about a patient’s heart electrical activity [32]. Hence, this
analysis is essentially a form of pattern matching or recognition where one with the
understanding of theory heart functionality can recognise what the ECG data is displaying and
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from there they can make valid inferences. Thus, these data can be analysed to measure the
heartbeat rate, rhythm, size and positioning of the heart compartments/chambers, the existence of
disorders or damage in the cardiac muscles or conduction system, the effect of heart drugs as
well as the functioning of pacemakers and sinoatrial nodes. For instance, irregularities in the
QRS complex without presence of P waves indicate the possibility of atrial fibrillation [31].
Furthermore it is crucial to consider the context of the patient and not rely solely on directly and
independently analysing the ECG data to ensure applicability and a correct diagnosis [33].
Otherwise it is possible for an ECG to falsely imply the presence of an issue that can lead to
misdiagnosis, recommendation of invasive measures and even overtreatment that can also be
detrimental and fatal. Thus, it is still crucial for the context of the patient to be considered and for
the ECG data to be correctly read as well as minimising the risk of human error that can cause
misdiagnosis.

Generally, an ECG is only performed after a is suspected to be experiencing HD or CVD, so this
is reactive in nature. It may also be in conjunction with a patient’s routine clinical check up or
physical examination, typically applicable for middle-aged and older patients. This allows to
obtain a control ECG report which can be used as the basis of comparison for when later ECG
reports are conducted to test for HD [31]. It can be performed continuously or to produce short
intermittent tracings. The former is typically performed for critical patients, ones that are given
anaesthetics, or ones who experience infrequent cardiac arrhythmia.

There are three forms of ECG that can be recorded at different conditions:
● Resting ECG: recorded while the patient is resting, lying down or in a comfortable

situation
● Stress or Exercise ECG: recorded while the patient is exerting pressure or exercising
● Ambulatory ECG: Monitors and records the patient at home for one or more days using

electrodes attached to a mini portable machine

That being said, with the incorporation of intelligent support systems that utilise ML and sensory
technology becoming more accessible, these comparisons and tests can be performed more easily
and cost-effectively so more members of society can have a clean bill of health. With its
deployment in consumer gadgets, they can even perform these tests while engaging in regular
daily activities, with the use of continuous ambulatory ECG that checks for short or sudden
abnormalities in the heart rhythms and insufficient blood flow to the cardiac muscles [32]. Apart
from ECG recordings, anatomical heart imaging modality is also utilised for measuring the
mechanical functioning of patients’ hearts.

2.4 Existing Systems and Literature Analysis
The following section provides a summary and comparison of 8 different literature sources or
journal articles that are related to this topic of heart disease prediction and classification using
ML algorithms. By analysing these similar projects and literature, can help us identify the
characteristics, methods/ML models employed, and gaps present in current heart disease
prediction and classification systems to aid in generating requirements and designing our
proposed system.
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2.4.1 Heart Disease Detection by Using Machine Learning Algorithms and a Real-Time
Cardiovascular Health Monitoring System [9]
This paper by Nashif et al. [9] presents their proposed design of a cloud-based heart disease
prediction system that detects the onset of heart disease using ML techniques built using the
java-based open access data mining platform, WEKA. Additionally, to provide continuous
monitoring of the patient’s condition in accordance with the concept of Internet of Things (IoT),
the author proposes a real-time patient monitoring system using Arduino that uses physiological
sensor technology to monitor real-time parameters, including body temperature, blood pressure,
humidity, and heartbeat. The system also allows for the prescribed doctors to be notified in the
event the real-time parameter exceeds the threshold through GSM technology.

They start by selecting and preparing different heart disease dataset to train the ML algorithms.
They opted for a combination of the Cleveland Heart Disease dataset consisting of 303 records
and the Statlog Heart Disease dataset with 270 records, both with 13 features. This merging of
datasets is believed to make the ML model more robust.

Moving on, the models that the authors proposed to use for this problem domain include Naive
Bayes, Artificial Neural Networks, Support Vector Machine, Random Forest, and Simple
Logistic Regression. The evaluation metrics they prioritised were accuracy, precision, recall,
fscore, sensitivity, and specificity.

From their comparative study, they found that SVM, Random Forest and Simple Logistic models
showed higher accuracy rates of more than 95 percent which make them considerable models for
biomedical applications of disease detection and prediction. For the other evaluation metrics,
they found that the SVM model performed better than the other models. Therefore, in their study,
they found it is decisive that SVM is the most efficient algorithm to be implemented on the heart
disease prediction system as found in our study when the 13 features were considered. From their
experimental study and literature review, no algorithm attained an accuracy level of more than 90
percent in heart disease prediction using the same number and types features as used in this
study.

Conclusively, through reviewing this study, a better understanding of the possible classification
algorithms and the evaluation metrics that can be used to compare them for this problem domain.
Thus, as it is the first literature source reviewed, it provides a good basis for understanding the
problem domain and the necessary steps to be taken to find a solution, from dataset preparation
methods, appropriate classifiers, and evaluation metrics.

2.4.2 Developing a Hyperparameter Tuning Based Machine Learning Approach of Heart
Disease Prediction [35]
This paper by Hashi and Zaman [35], is aimed at presenting their proposed system for heart
disease prediction using ML techniques along with comparing its performance with traditional
systems. For this, they implemented Logistic regression, K-nearest neighbour (KNN), Support
vector machine (SVM), Decision tree (DT), and Random Forest (RF) classification models to
study the best performing model for this problem domain. Along with that, another specialised
aspect of their study was they analysed the effects of tuning the hyperparameters using a grid
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search approach for the five aforementioned classification models to further enhance the
performance of the prediction models.

For their study, they utilised the Cleveland Heart Disease dataset from the University of
California, Irvine (UCI) machine learning repository for both training and testing their ML
models. Although the dataset contains 75 attributes, they focused on using 14 numerical valued
attributes. Then, for preprocessing the dataset, they identified and cleaned missing values,
processed noise, incomplete or inconsistent values and removed redundancies with the attributes.
Afterwards, the preprocessing involved separation, feature scaling and normalisation to find the
standard format of data. During this step they generated a description of the dataset to understand
its distribution by generating the maximum, minimum, mean and standard deviation values of
each feature set. With the preprocessing completed, they partitioned the dataset into the 80:20
ratios, 80% for training and 20% for testing.

Then, they developed and generated their ML classification models with the five algorithms
mentioned earlier. They performed this twice, the first one including the five algorithms without
hyperparameter tuning and the latter using this technique where grid search and cross validation
are employed to optimise the hyperparameters. Essentially, grid search entails an exhaustive
search technique which computes the optimal hyperparameter values. It builds a model that
generates all the parameter combinations and stores combinations.

The performances of the conventional and proposed methods were evaluated and compared,
based on their chosen evaluation metrics, consisting of accuracy, precision, recall, and F1 score
using the True Positive, False Negative, False Positive, and True Negative values. They found
that the traditional method produces accuracies between the 81.97% and 90.16% range whereas
the proposed approach coupled with hyperparameter tuning produced improved accuracies and
performance between 8.25% and 91.80%. Thus, showing that their proposed approach is
capable of improving what is currently available through the acquisition of feasible performance.

Conclusively, their study proves and illustrates the importance of using or incorporating
hyperparameter tuning in the ML model in improving predictive performance of heart disease
classification. Besides that, their study showed the strength of the KNN model for this problem
domain, as their results displayed that this model possessed the best performance, especially in
terms of accuracy (91.8%), followed by SVM, logistic regression, decision tree, and random
forest.

2.4.3 Classification and Feature Selection Approaches by Machine Learning Techniques:
Heart Disease Prediction [36]
This paper by Reddy et al. [36] aims to present their study to predict the classification model and
identify the selected features that are influential to the classification and prediction of HDs. For
this study, the authors used five heart disease datasets (Cleveland, Switzerland, Hungarian,
V.A. Medical and Statlog project heart disease, all of which accumulated from the University of
California Irvine (UCI) machine learning repository website and were then combined into one.
They also performed data preprocessing as some records had missing values which were
replaced with the modal or most frequently occurring value. Besides that, another preprocessing
technique that they employed was normalisation where they eliminated high values of respective
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attributes or outliers in the data distribution. Then the data was partitioned with three different
ratios, 60–40%, 70–30% and 80–20%.

For the development they utilised the R programming language along with the CARET package
for data preprocessing, splitting, and the ML models. The ML models they opted to explore and
experiment include K-Nearest Neighbour, Support Vector Machine, Random Forest, Naïve
Bayes and Neural Network. Along with that, they studied the effects of using different feature
selection methods on the performance or accuracy of the proposed system in classifying or
predicting heart disease. For this, the feature selection methods that were experimented include,
correlation matrix, recursive feature elimination with random forest algorithm, variable
importance estimations, rank feature by importance with learning vector quantization model.
The feature selection method is conducted on the merged dataset to choose significant or relevant
features for the model construction in order to enhance the prediction accuracy of the target
attribute. For this, this project conducted a correlation study to identify the highly correlated
attributes. Based on the order of the features, the common 8 and 6, in total 14 selected
features  are   taken   into   consideration   to   build   a   model.

The evaluation metrics to study the performance of a model on the test dataset is calculated by
accuracy, sensitivity/recall, and specificity using R. For their study, the sensitivity and specificity
metrics are especially significant as it evaluates the true positives (risk class) and the true
negatives (normal class) respectively. Hence, reflecting the predictive capabilities of the ML
models or classifiers.

Based on their results, they found that the random forest classifier with the use of 8 and 6
selected features displayed the highest accuracy using a 70:30 or 80:40 split ratio. The two split
ratios show an insignificant increase or change in average accuracy. Overall, their study shows
that the performed random forest algorithm exhibits the best performance with the existing
model accuracies. The accuracy of using 8 selected features is more substantial than using the
combined dataset, indicating the significance of the feature selection method employed. The use
of 6 selected features and less displayed decrease in average accuracies compared to using the
combined dataset, hence, this could be due to underfitting of the attributes on the ML models and
the performance of the classifier under default conditions. This number acts as the minimum
number required to build a strong model.

All in all, this study was a clear example of selecting the correct minimum and prominent
attributes that improves the performance when compared to using whole features from the
dataset. It also showed that the random forest algorithm produced the most accurate predictions
and is a good classification model for this problem domain. It also illustrated that the
incorporation of non-modifiable risk factors (genetic risk factors) and modifiable risk factors,
including smoking, physical exercise and alcohol consumption improves the predictive
performance of the models.

2.4.4 Machine Learning-Based Classification Algorithms for the Prediction of Coronary
Heart Diseases [37]
This paper by Kwakye and Dadzie [37] presents their comparative study and implementation of
different classification algorithms of coronary heart disease datasets with ML models that they
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developed and evaluated. For their development, they utilised the Framingham dataset which
was collected from Framingham, Massachusetts residents to train and test their designed model.
Their primary goal for the designed algorithm is to classify whether a particular patient will
develop coronary heart disease in the following decade. They used all 4000 records and 16
attributes of the dataset, believing that all the characteristics are potential risk factors. They split
the characteristics into 3 main categories, namely, demographic, behavioural, and medical risk
factors.

Then, for the next stage, they preprocessed their dataset, by examining for potential missing
values and the range of the features to avoid outliers. Here, categorical features were
programmed, missing values and outliers were pinpointed and removed/replaced from the data.
Next, they performed feature engineering of the data that is to be used for the model
development and training. Feature engineering involves data transformation where they are
selecting relevant features, attributes and comprehensively tuning the data points.

In the next stage, they developed their classification models based on ML algorithms, which
include k-nearest neighbour (KNN), support vector machines (SVM), decision tree (CART),
logistic regression (LR), naive bayes (NB), and random forest (RF). For their experimental
testing, they utilised the cross-validation test based on ROC-AUC for unbalanced data algorithm
models which revealed that there were low mean accuracy scores for the SVM model. They also
performed a prediction test based on ROC-AUC for both balanced and unbalanced-data
algorithm models.

Based on their study they found that having an unbalanced target feature can cause the
performance of the various algorithms to be low. Therefore a synthetic minority oversampling
technique (SMOTE) is incorporated to transform the initial data and balance the classes. After
this, the best performing model or classifier was found to be the random forest model, an
ensemble model, that displays an accuracy of 0.946337. Based on their study, they found that
using hyperparameter optimisation, in this case the grid search method, did not change the
performance of the model more than when default settings were utilised.

Conclusively, their study shows the importance of a well prepared, cleaned, preprocessed, and
standardised dataset in building the ML models that exhibit optimal predictive performance.

2.4.5 Prediction of Heart Disease by Classifying With Feature Selection and Machine
Learning Methods [7]
This study by Gazeloğlu [7] presents their comparative study of several different ML algorithms
and various feature selection methods that they developed using WEKA, Python and MATLAB
as well as their performances in classifying cardiovascular disease among patients in a dataset.
Some of their requirements include the system possessing low execution time and possessing
high accuracy in order to make correct decisions and diagnoses and minimising the risk of
human error. Based on their literature review, they found that the limitations that exist with other
current systems include their lack of incorporating different feature selection methods to improve
the prediction accuracy as well as the current computer-aided systems are too slow in its
execution. Additionally, they find that the traditional process of CVD screening can be
slow-moving, especially considering the final decision is made by the heart specialists and there
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is also the risk of human errors taking place in the decision making as the results can be affected
by conditions such as the practitioner’s education, working conditions, number of patients, or
high rate of misclassification or misdiagnosis.

They declared four hypotheses that they aim to study through their experiments so that they can
determine whether at the end of the study these hypotheses will still remain true and valid. These
hypothesis generally include:

1. Different ML algorithms result in different accuracy rates and performances.
2. The number of parameters used affects the model’s accuracy rate.
3. Different feature selection methods used result in different accuracy rates and

performances.
4. We cannot evaluate the performance of an ML model solely on the percentage of success.

The author then prepares their dataset which they source from the Heart Disease Dataset from
the UCI machine learning repository containing data of 303 patients and with 14 variables.
According to the journal article, they did not perform any further preprocessing measures to the
dataset.

In the next stage, they reviewed 18 ML techniques and used them to develop classification
systems and applied them to the dataset. These ML algorithms include decision tree (J48),
ADTree, KNN, roughtSet, logistic regression, random forest, NBTree, RBFNetwork, fuzzy
rough NN, fuzzy NN, NN, multilayer perceptron (MLP), naïve bayes. SVM (polykernel,
normalised polykernel, puk and RBF kernel), and genetic programming. Along with that, they
tested three types of feature selection algorithms, which include correlation-based feature
selection (CFS), fuzzy rough set and chi-square algorithms. Hence, they tested every pair
combination of one of each of the 18 ML algorithms with one of each of three feature selection
methods.

The evaluation metrics they used to test their models include the classification rate, the area
under curve calculated by receiver operating characteristic (AUC-ROC) analysis, the sensitivity
(true positive, TP, and false positive, FP, rates) and the kappa coefficient. The AUC-ROC metric
is utilised for comparing different testing techniques where the highest values are ideal. In this
respect, the best performing model was the naive bayes without feature selection model. The TP
rate represents classification of a true condition as true, and for this, the best model was found to
be the SVM (polykernel) model with CFS or no feature selection. The FP rate is the
classification of a sick patient with “0 or presence of HD” or also known as the alpha error in
statistical sciences. So, for this metric a lower value is more ideal. In that sense, it is found that
the ADTree with CFS feature selection performs the best. The kappa coefficient is a robust
statistic that measures the inter-rater agreement with categorical elements and having a value of
between -1 and +1 where +1 indicates a perfect agreement whereas -1 represents a perfect
disagreement. In this respect, the best performing model is the naive bayes classification with
CFS feature selection method.

Overall, it is found that with CFS feature selection, the naive bayes algorithm is the best
performing with an accuracy rate of 85%. Additionally, the author also found that all their earlier
specified hypotheses were found to be true. Also, through this study, they found that their model
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can produce a high accuracy rate despite using less variables, thus being more time and cost
effective. The limitation of their study includes they could not take the patient’s race into
consideration if that could be a possible feature correlating with the target value as that feature
was absent from their dataset. For future works, they plan to implement the ML model in the
form of a mobile application which can allow users to input their parameter values.

2.4.6 Heart Disease Diagnosis Based On Deep Learning Network [38]
This paper by Alhussainy and Jasim [38] presents their implementation of deep neural networks
to be used as classifiers for developing a heart disease prediction system. Thus, their focus is
studying the theory behind deep learning neural networks and its applicability to this problem
domain. Thus, in their literature review, they reviewed other papers that were concerned with
heart disease prediction using NN techniques such as recurrent neural networks, deep belief
networks, and artificial neural networks optimised by particle swarm optimisation (PSO) and ant
colony optimisation (ASO).

They began by collecting their dataset from the Heart Disease Dataset from the UCI machine
learning repository. Then, they preprocessed it by replacing missing values in the dataset and
treating continuous values and making them discrete. After that the data is partitioned or isolated
into a training and testing set. The next step involves feature extraction to increase the record
attributes by adding more important details or exploratory information such as mean, median,
standard deviation, sum, average, min, max, etc. After that data augmentation is performed,
where the derived features from the previous step are added to the original data set.

The deep learning neural network model consists of 5 layers and a different number of neurons.
The first layer is the dense layer, representing the dot product of input with weight with addition
to bias, then the dropout layer, used to reduce the feature size, the rectifier layer, used as
activation function reducing the training time without influencing the performance, the sigmoid
layer, which is used as an activation function for the later stage to sum the output to represent the
probability of the class for every output, and finally the classification output layer, which
represents the number of the required classification.

The model performance was evaluated using three metrics which include accuracy, specificity
and sensitivity. Their proposed model was compared with several other ML algorithms that were
applied on the same dataset, namely, decision tree, naive bayes, KNN (K=7), and SVM. From
their results, it is found that their proposed system surpassed and improved on these existing
models where it achieved an accuracy of 84.67%, sensitivity of 80% and specificity 90.72%.
Overall, this paper shed more light on deep neural networks in terms of its implementation and
structure as well as the optimal parameter values that the author found when using this model
and the applicability of this form of algorithm (deep learning) for this problem domain.

2.4.7 A Deep Learning Method for Prediction of Cardiovascular Disease Using
Convolutional Neural Network [39]
In this paper Sajja and Kalluri [39] explain their proposal of a deep learning approach for
prediction of CVDs from an earlier stage. So, in this paper they aim to compare and contrast the
performance of their proposed method that uses convolution neural network (CNN) with
traditional approaches, namely, logistic regression, k-nearest neighbours (KNN), naïve bayes
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(NB), support vector machine (SVM), and neural networks (NN). Thus, this is the second paper
that we have reviewed which has the primary focus of using NN in hopes of improving the
prediction accuracy for this problem domain. They performed literature review as well as
performed background research on the aforementioned traditional ML algorithms before
explaining the implementation of their proposed method.

They started by preparing the dataset which is the open source Cleveland Heart Disease Dataset
sourced from the UCI ML repository. It contains 14 features along with 303 instances. Then,
they preprocessed or cleaned the dataset to remove missing values, using the pandas package.
They visualised the data distribution using counter plot and histogram. The dataset was
partitioned into 80% training set and 20% testing set. This same dataset was used for their
proposed CNN model as well as the traditional models that they are comparing with.

For their implementation of a deep learning neural network algorithm, they proposed a
convolutional architecture. Structurally, it first contains the input layer, subsequently the
convolutional layer containing 16 kernels together with activation function, ReLU, and in the
subsequent layer 25% of the nodes are removed by the dropout layer. After that, the
convolutional layer was conducted again but with eight kernels reusing the previous parameters
and also utilised the dropout layer with 25%. Finally, there is a softmax layer.

The evaluation metric that they utilised was accuracy and the results were also plotted on ROC
curves. It is found that the proposed method surpassed the traditional methods by achieving the
high accuracy values, which were 95.04% for the training accuracy and 94.78% for the testing
accuracy. Hence, the authors find that their model supports the medicos for prediction and
another advantage it possesses over the traditional methods is that since it employs deep learning
it can be effective for large volume of data and the preprocessing, feature extraction and
prediction are handled by the model itself whereas the traditional algorithms would require
different methods for each of those tasks. Overall, this literature explains the key structural
elements of a deep learning model to consider when developing our own model as well as its
applicability for this problem domain of heart disease prediction.

2.4.8 Cardiovascular disease risk prediction using automated machine learning: A
prospective study of 423,604 UK Biobank participants [40]
This paper by Alaa et al. [40] presents their study regarding cardiovascular disease and the
clinical application of machine learning models to predict the onset of such conditions. Along
with that, they explain the development of their automated approach (AutoPrognosis model) to
assess the risk value of CVD in patients.

For their project, they utilised and analysed a dataset of 423,604 participants who do not have
CVDs at baseline from UK Biobank. For this, they extracted the records of participants who
were 40 years of age and older and had no known history of CVD at baseline from the UK
Biobank and this formed the 423,604 participants. Then, they cleaned and preprocessed the data
as it contained missing values for certain attributes, and their method to do so was by excluding
those attributes, so eventually a total of 473 attributes were considered during analysis.
Additionally, they performed data imputation on their models using the MissForest algorithm.
They grouped the attributes into 9 categories, namely, health and medical history, lifestyle and
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environment, blood assays, physical activity, family history, physical measures, psychosocial
factors, dietary and nutritional information, and sociodemographics.

For their analysis, they compared their proposed approach (AutoPrognosis model) with some
existing models, which are the Framingham Risk Score, Cox Proportional Hazard Model, and 5
benchmark ML models, including linear support vector machines (SVM), random forest, neural
networks, AdaBoost and gradient boosting machines. The benchmark ML models were
implemented using the Scikit-learn library in the Python programming language. The model’s
hyperparameters were found using the grid search method.

For the implementation, their ML-based model for the CVD risk prediction, they utilised the
AutoPrognosis which is an algorithmic framework that automates the design of ML-based
clinical prognostic models. Hence, when provided the participants’ attribute values and CVD
outcomes (supervised model), this trains the model using 200 iterations of an advanced bayesian
optimisation method, that automatically designs a prognostic model from the weighted ensemble
of ML pipelines and then explores these new pipelines at every iteration to evaluate its
performance by using cross-validation. Each of these pipelines consists of design options for
performing data imputation, feature processing, classification and calibration algorithms of
hyperparameters. Overall, the design consists of 5460 possible ML pipelines, with 7 imputation,
9 feature processing, 20 classification and 3 hyperparameter calibration algorithms, the most
accurate being the model using the MissForest data imputation technique, no feature processing,
and an XGBoost ensemble classifier containing 200 estimators and using sigmoid regression for
the calibration. As part of the implementation, the author ranked the contribution of the different
variables in the prediction model to find the relative importance of the 473 variables. This
variable ranking is attained by fitting a random forest algorithm with the participant variables as
inputs and the model predictions as the outputs. Then the variable importance scores are labelled
at the different variables using a standard permutation method which they obtained from their
literature review, which assesses the mean decrease in the classification accuracy after permuting
each variable over every tree. So, the resulting scores reflect how the variables affect the
prediction by the AutoPrognosis model.

For the evaluation, the metric they used was the area under the receiver operating characteristic
curve (AUC-ROC) obtained through cross-validation, in an effort to prevent overfitting of the
model. Based on their results, they found that the benchmark algorithms except for SVM
performed better or are statistically more significant than the baseline Framingham score.
Compared to the Cox PH model, neural networks, AdaBoost, gradient boosting, and
AutoPrognosis performed better in terms of AUC-ROC score. Furthermore, the proposed
AutoPrognosis model (AUC-ROC: 0.752, 95% CI: 0.747-0.757, p < 0.001) is statistically
significant and has better performance over the Frammingham score as well as the benchmark
algorithms. The authors also evaluated the models in terms of sensitivity and positive predictive
value (PPV) and found that their proposed model attained a sensitivity of 69.9% and a PPV or
2.6% which is admirable. From this, we can infer that more CVD patients would receive correct
preventative treatment in a timely manner through the utilisation of this proposed model. From
analysing the variable importance, it is seen that variables related with physical activity (usual
walking page) and blood measurement is typically more significant for this AutoPrognosis model
than traditional risk factors such as in existing systems.
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Conclusively, through this study the authors explained their implementation of their proposed
approach to CVD prediction using the AutoPrognosis model and through their evaluation and
comparison have proven its statistical significance and improved prediction accuracy over
existing systems such as the Frammingham score, the benchmark algorithms and the Cox PH
model. Additionally through the variable ranking they were able to find new determinants in the
prediction of CVDs as well as identify the relative importance of the features. They also revealed
complex interactions between characteristics or features in individuals, identifying risk
predictors specific to specific sub-populations. For instance, the feature of the existence of
long-standing illness is a strong determinant for female patients but less predictive for males.
Additionally, features from ECG records were stronger determinants for males than females. The
limitation to this study is the absence of cholesterol biomarkers or blood-based biomarkers,
which are effective determinants, so they were not able to study its effect on CVD risk
prediction. Additionally, the patients in the dataset are ethnically homogenous where the majority
being of white ethnicity, so ethnicity-specific risk determinants were not able to be studied.

Overall, this paper has been influential to showcase the importance of understanding the features
in a dataset and the complex relations that exist among these features and their relative
importance in affecting prediction accuracy. Along with that, the structure of the author’s
proposed model can be taken into consideration when designing our model.
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2.4.9 Summary of Existing System and Literature Analysis
Table I

Summary of Existing System and Literature Analysis

Study Dataset Preprocessing Tool No. of
Attributes Used

Hyperparameter
Tuning

Classification/
Algorithms Used

Evaluation
metrics

Best Algorithm
and Result

Nashif
et al. [9]
(2.4.1)

UCI
Cleveland
Heart
Disease
dataset
and
Statlog
Heart
Disease
dataset

Feature
selection on
UCI Cleveland
Heart Disease
dataset,
selecting 13
features

WEKA 13 features None - Naive Bayes
- ANN
- SVM
- Random Forest
- Simple Logistic
Regression

- accuracy
- precision
- recall
- fscore
- sensitivity
- specificity

SVM
- accuracy: 97.53%
- precision: 95.95
- recall: 97.50%
- f-score: 96.72%
- sensitivity:
97.50%
- specificity:
94.94%

Hashi
and
Zaman
[35]
(2.4.2)

UCI
Cleveland
Heart
Disease
dataset

- Missing value
identification
and removal
- Removed
outliers or
inconsistent
values
- Removed
redundancies
with the
attributes
- Separation
- Feature
scaling
- Normalisation

Not
mentioned

14
numerical-valu
ed attributes

Grid search - Logistic
Regression
- KNN
- SVM
- Decision Tree
- Random Forest

- accuracy
- precision
- recall
- fscore

KNN with
hyperparameter
tuning
- accuracy: 91.80%
- precision:
93.55%
- recall: 90.62%
- f-score: 92.06%
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Reddy et
al. [36]
(2.4.3)

UCI
Heart
Disease
dataset
(Clevelan
d,
Switzerla
nd,
Hungaria
n, V.A.
Medical)
and
Statlog
Heart
Disease
dataset

- Feature
selection
methods, such
as   wrapper
methods,   filter,
recursive
feature
elimination,
variable
importance
estimations,
learning vector
quantization
model,
embedded and
ensemble and
hybrid methods

- Normalisation
(eliminate
outlets or high
values in the
attributes)

R
programmi
ng
language
and the
CARET
package for
data
preprocessi
ng,
splitting
and ML
model
implementa
tion

14  attributes None - KNN
- SVM
- Random Forest
- Naive Bayes
- NN

- accuracy
- sensitivity
- specificity

Random Forest
with 8 features
- accuracy: 94.96%
- sensitivity: 0.914
- specificity: 0.977

Kwakye
and
Dadzie
[37]
(2.4.4)

Framingh
am Heart
Study
Dataset

- Identified
missing values,
range of
attributes to
avoid outliers
- Data
transformation
-feature
selection

Not
mentioned

16 attributes
(all)

Grid search - KNN
- SVM
- Decision Tree
(CART)
- Logistic
Regression
- Random Forest
- Naive Bayes

-cross-valid
ation
accuracy
(CV)
- Hold-out
prediction
(HOP)
testing
using

Logistic regression
- CV: 0.728592
(original),
0.729461 (smote)
- HOP testing:
0.5127 (original),
0.6745 (smote)
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ROC-AUC

Gazeloğl
u [7]
(2.4.5)

UCI
Heart
Disease
dataset
(Clevelan
d,
Switzerla
nd,
Hungaria
n, V.A.
Medical)

Feature
selection
(Correlation-bas
ed   Feature
Selection
(CFS),  Fuzzy
Rough  Set  and
Chi-Square
algorithms)

WEKA,
Python and
MATLAB

14 attributes None - Decision Tree
(J48)
- ADTree
- KNN
- RoughtSet
- Logistic
Regression
- Random Forest
- NBTree
- RBFNetwork
- Fuzzy Rough NN
- Fuzzy NN - NN
- Multilayer
Perceptron (MLP)
- Naïve Bayes
- SVM (polykernel,
normalised
polykernel, puk and
RBF kernel) -
Genetic
Programming

-
Classificati
on Rate
- TP Rate
(sensitivity)
- FP Rate
(sensitivity)
-
ROC-AUC
- Kappa
Statistic/
Coefficient

Naive-Bayes
Algorithm with
CFS feature
selection
- Accuracy Rate:
85%
- TP Rate: 0.897
- FP Rate: 0.210
- ROC-AUC:
0.905
- Kappa Statistic/
Coefficient: 0.691

Alhussai
ny and
Jasim
[38]
(2.4.6)

UCI
Heart
Disease
dataset
(Clevelan
d,
Switzerla
nd,
Hungaria

- Replacing
missing values
- Transforming
continuous
values to
discrete

Not
mentioned

14 attributes None - Recurrent Neural
Networks (RNN)
- Deep Belief
Networks
- Artificial Neural
Networks (ANN)
Optimised by
Particle Swarm
Optimisation (PSO)

- accuracy
- sensitivity
- specificity

Proposed Neural
Network Model
- accuracy: 84.67%
- sensitivity: 80%
- specificity:
90.72%
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n, V.A.
Medical)

and Ant Colony
Optimisation
(ASO)

Sajja
and
Kalluri
[39]
(2.4.7)

UCI
Cleveland
Heart
Disease
dataset

- Preprocessing
using Pandas
package (no
further
explanation)

Not
mentioned

14 attributes None - Convolution
Neural Network
(CNN) (Proposed)
- Logistic
Regression
- KNN
- Naïve Bayes
- SVM
- NN

- accuracy Proposed
Convolution
Neural Network
(CNN)
- accuracy: 94.78%

Alaa et
al. [40]
(2.4.8)

UK
Biobank
dataset

- Missing
values
imputation or
removal of
attribute with
missing values

Python
Programmi
ng
Language
and the
Scikit-Lear
n Library

473 attributes Grid Search - AutoPrognosis
model (proposed)
- Framingham Risk
Score, - Cox
Proportional
Hazard Model
- SVM
- Random Forest
- NN
-AdaBoost
-Gradient Boosting
Machines

-
AUC-ROC
- sensitivity

- AUC-ROC:
0.752
- sensitivity:
69.9%
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Conclusion and Gaps in Existing Studies/Literature
To sum up, the above are summaries (2.4.1-2.4.8) of some or 8 of the chosen literature sources
that were reviewed and highlighted during our research of journal articles in this field of heart
disease classification/prediction with ML due to their contribution in further developing our
understanding regarding this problem domain and in implementing the solution using ML.
Hence, from reviewing these sources, a better understanding of the general steps required to be
performed, such as specific preprocessing techniques, potential ML algorithms, feature selection
techniques, hyperparameter tuning methods and evaluation metric were learned. Thus, from this
preliminary review it is evident that the prediction accuracy of the ML model can change
depending on the quality of the data source, attributes considered, preprocessing performed, type
of ML algorithms, hyperparameter tuning methods, and the data partitioning ratio (train:test)
employed. Designed and proposed hybrid models tend to be performant as well such as Alaa et
al. 's implementation of their AutoPrognosis model.

The main points that were standard across the journal articles and similar projects done were
summarised in the table 1 above to help with further condensing the outcome of the literature
review and to help identify the specific information to be incorporated in our implementation as
well as for quicker future revisions.

At the same time, from analysing these literature sources, gaps or limitations that exist with the
current heart disease prediction and classification projects and systems were identified. The
following are some of the limitations that were identified:

Feature Selection
Firstly, there is a lack of use of feature selection methods in current literature and proposed
systems. Utilising more input attributes to train and test a model does not necessarily indicate a
proposed ML model that has more prediction accuracy. Instead, this could be the reason for the
low accuracy, as less correlated attributes are also considered for the model building process. So,
first the correlation of the attributes in the dataset are studied using a multivariate plot such as a
correlation matrix is generated to identify the degree of correlation between the features present
in the dataset and use this to find hidden patterns. From there, feature selection can be performed
which is essentially the choosing or selection of only relevant and appropriate input features to
be considered for the ML model construction. In the Machine Learning Implementation section,
this process is explained in more detail as well as how it will be implemented in practice.

Hyperparameter Optimisation
Secondly, another methodology that is not made use of when developing these systems is
hyperparameter tuning or optimisation. This process is performed in an attempt to improve the
prediction accuracy by finding and utilising the most optimal combination of parameters also
known as the hyperparameters that is able to train a model to maximise its performance. One
way the hyperparameter combination is found is through the grid search method among others.
This method is an exhaustive way of finding hyperparameters where every combination of
hyperparameters is trialled using a grid, before returning the best-performing combination. This
process is explained more thoroughly and how it is implemented in practice in the Machine
Learning Implementation section for Hyperparameter Optimisation (section 3.4.5). Overall, this
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is one aspect that should be considered in the ML model development process to increase and
maximise prediction accuracy.

Data Preprocessing
Additionally, another limitation to present studies and systems is the lack of preprocessing
methods used to prepare the dataset before it is fitted with an ML model. This can be seen in
sources [9] and [7], where the role of data preprocessing is overlooked or not included in the
model development process. In reality, a correctly cleaned and pruned dataset makes it more
suitable to be used for training and testing ML models as it can even improve the performance
and evaluation metric results obtained. Therefore rather than studying and understanding the
dataset, its distribution and faults, as well as the data cleaning and pruning techniques available,
the implementation may tend to rush into determining the ML algorithm or designing model.
Overall, the combination of a well-prepared dataset with the correct classification algorithms can
ensure a prediction system with improved performance and accuracy. In the data preparation
section of the ML Implementation section (section 3.4.3), the tentatively explored data
preparation techniques are explained in terms of theory and practical application/implementation.

Therefore, these limitations were kept in consideration when designing our ML models and for
our implementation of the heart disease prediction and classification system, to provide novelty
features and functionality that can improve the program's prediction accuracy as well as the state
of the field.
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3. Methodology
This section will detail the steps behind the methodology for the development of this heart
disease prediction and classification system.

3.1 Phases of Implementation
The following describes a brief overview of the general stages that our project will involve.
Hence, the methodology for this project can be divided into five phases as follows:

Phase 1: First, we start with the system planning stage, in which the most fundamental aspects of
our project are clearly defined, including the problem statements, aim, objectives, deliverables
scopes, and milestones to define our motivation, ensure the development is on track and the final
product fulfils or satisfies predetermined aspirations. During this stage literature review is
conducted to understand the current status quo of heart disease classification systems and the
gaps that they possess and our project can improve on. Additionally, this preliminary study aids
us in determining the various ML algorithms that can be applicable and implemented for our
problem domain of heart disease classification and prediction. Through this, we can understand
the capabilities, characteristics and considerations for these models. Literature review is also
conducted to understand the problem domain of CVDs, HDs, and ECGs, to gain a better
understanding of the context the model will be applied on to improve its effectiveness.

Phase 2: The next stage touches more on the development of the ML models. This stage starts
with the selection of the dataset and the acquisition or collection of the data from the dataset. If it
has insufficient records, data from other sources are merged as well. Subsequently, involves the
preparation of the dataset that is to be used to train and test our ML models as data understanding
is performed where the dataset contents are visualised through univariate and multivariate plots
and through exploratory data analysis (EDA) is performed where a description of the main
characteristics is generated to be visualised in a graphical format and to understand its
distribution and the range of each attribute. Preprocessing is conducted to clean the dataset of
noise and eliminate any missing values and outliers in the distribution. The exact preprocessing
methods necessary will only be determined during the actual development of the ML stage after
data understanding is completed. Feature selection or engineering is performed where we select
the relevant features from the group of attributes and the extraction of hidden features influential
to our study. It is performed based on the multivariate plots and from understanding the
correlation between features between each other and the target variable. The dataset is then
partitioned into specified ratios of training and testing data. We will test the effect of different
data partitioning ratios on the performance of the ML model to find the best combination with
the least underfitting and overfitting. For instance, we will test 50:50, 60:40, 70:30, and 80:20.
Then, begins the development of the classification algorithms based on the predetermined ML
models that were chosen. The ML models are trained with the training dataset and then
subsequently validated with the testing dataset. In the experimental testing and results phase, we
will utilise appropriate evaluation metrics to compare the performance of the ML models,
namely accuracy, precision, f-score, etc. So, the performances of the different ML models are
computed, and compared hyperparameters are incorporated with the designed ML models to test
their effect on the model performance. From there, using the model selection method employed,
we can observe the best-performing ML model for classifying and predicting heart disease
among patients and it will be chosen to be integrated with our web-based system.
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Phase 3: During this stage, requirements for the prospective web app system are elicited through
methods such as reviewing previous works and literature sources as well as ethnography or
reviewing similar heart disease prediction and classification systems. By having a clear list of
system requirements, we can then define the desired system functionalities. The technologies and
tools required for the implementation of the ML model, as well as the web app system, are
defined.

Phase 4: A prototype design is made, and diagrams are constructed to visualise the proposed
system’s UI as well as its workflow. This will provide a clear and visual plan which will aid in
development. Appropriate UML diagrams are designed to illustrate the information and logic
flow of the final system.

Phase 5: This stage involves the development of a web app in which the chosen ML model will
be integrated with and deployed, along with deploying tasks to deploy the web application to the
hosting environment (AWS). This will allow the end user to easily input their credentials and
details that are required for the ML model to provide a verdict. Appropriate testing methods will
be performed, namely, unit testing of the web app components and integration testing of the
integration between the ML component and the web app system with the database and backend,
so that it is free from errors that may affect the user experience to ensure the system is functional
and fulfils initial expectations.

3.2 Graphical Flow/Flowchart of Components for the Methodology/Implementation
This section illustrates the sequence of the above main methodology steps or phases for the
development cycle for this project. Hence, figure 2 shows the flowchart of the general phases
involved in the overall project development.

Figure 2: Flowchart of main phases of the project and its implementation. An abstract view of
the project development cycle.

Following that, figure 3 displays the steps for implementing and developing the ML models as
described in phase 2 of the phases of implementation, to determine the best performing model
that will be chosen and integrated to the web platform.
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Figure 3: Flowchart of main phases of the ML implementation process.

3.3 Software Process Model
In order to develop this heart disease prediction/classification system, the waterfall development
model was opted for the entire software process model or Software Development Life Cycle
(SDLC). A waterfall model is considered a plan-driven model with several distinct phases of
specification and development that are performed sequentially from start to finish, typically in
one cycle. Thus, it is seen to possess a linear-sequential and continuous design approach. This
process model ensures that the final system can be produced in one cycle with minimal
backtracking to previous phases for changes and minimal iterations. So, it ensures a quick
development process and is suitable for smaller scope or scale projects with a limited time
constraint. Additionally, applying this model necessitates clearly and thoroughly defining the
system requirements beforehand, as it does not easily enable backtracking to the planning and
specification stage and so changes to the project scope can be minimised. Nonetheless, by fixing
the requirements, this ensures the project has been understood thoroughly, and the development
progresses smoothly from start to finish sequentially without requiring backtracking.

The following diagram displays the flowchart of the general phases in a typical waterfall
software process model:
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Figure 4: Waterfall development model flowchart.

In contrast to the other available software process models that are available, such as the
incremental model or the agile development method, which allows for progressive builds to be
released after every cycle or increment, it is found that the waterfall model is more suitable for
implementing this project and the development phases that are involved. Typically, an
incremental model would be useful in the event an earlier build of the system should be deployed
and released for testing and usage, thus decreasing the waiting time to begin the usage of the
system as well as being more flexible to requirement changes and reducing the risk of system
failures as testing is performed at every increment and backtracking to previous phases is easier.
However, our justification for choosing the waterfall model is that for our development, from
looking at the phases to undergo, it involves some major dependencies between the ML
implementation (Phase 4) and the web development phases (Phase 5). This means that we intend
to ensure that all the ML algorithms we have set out to implement have been developed, tested
and compared, before the best model is chosen as well as deployed and integrated in a website
format that is usable by the end-user. This ensures that there is only one deliverable which is the
final system utilising an ML model that fulfils evaluation metrics and possesses admirable
prediction and classification accuracy, especially considering the problem domain at hand, which
necessitates that the system provides a correct and accurate diagnosis.

Additionally, a waterfall model is generally more suitable for smaller scope or scale projects and
systems where the requirements are defined and assessed clearly and comprehensively, ensuring
the development time is quicker as there is little to no backtracking to any previous phases. This
holds true for our project which only consists of mainly five phases. Moreover, for the
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implementation of the ML component, which is seen as the main component of our system, this
component/phase involves dataset preparation, preprocessing, partitioning, ML algorithm
development and application, and finally testing. Thus seeing as these steps are sequential and
each step is dependent on the previous step to occur, a waterfall method will ensure that every
step is performed sequentially, ensuring there is less complexity in the development process and
the process is completed quicker. Along with that, having a well-defined work plan with
predefined deadlines for every stage ensures the final system can be ready for use within the
specified timeline.

The following sections provide a brief analysis and explanation for each phase of the SDLC for
this project development:

Planning Phase
This is the first phase of this waterfall development model and during this stage, the developers
define the project’s fundamental aspects and are part of the initial project plan, including the
problem statement, project goals, objectives, deliverables and scope. This provides the
developers a clear list of goals the platform should fulfil before it is released officially for use
resulting in lesser backtracks or changes to the project goals. For our project these key
information have been highlighted in the introduction section and its subheadings (1.1-1.6). As
per the work plan in the activity log, a total of 7 weeks are allotted for this planning phase to
ensure it is completed and checked thoroughly before progressing to the subsequent stage.

Specification Phase
This specification and requirements analysis phase is the second stage of our waterfall
development model. In this stage, the requirements of our prospective system are elicited,
gathered from various sources and assessed, which are then organised to generate the Software
Requirement Specification (SRS) document. These requirements serve as a checklist to be
considered when designing and developing the system in the following development phase.
Typically these requirements can be divided into two categories in the SRS, namely, functional
and non-functional requirements. In our case, for the system requirements, that would be listing
the system functionality that our heart disease prediction system should fulfil, such as allowing
users to sign up for a patient account or to input physiological data and obtain a diagnosis based
on the ML model’s processing of the input data. As for the non-functional requirements, other
aspects of the system should meet expectation, such as the main requirement being accuracy
where the system should possess high prediction accuracy to ensure users obtain the correct
diagnosis based on their entered data. As per the work plan in the activity log, a total of 6 weeks
are allotted for this specification and requirements analysis phase to ensure it is completed and
checked thoroughly before progressing to the subsequent stage.

Design Phase
The third stage is the system and software design phase, where the design of the web app of the
system and its user interface (UI) is prototyped. This was done using Adobe XD where the pages
and main components of the prospective system’s web component is designed to visualise how it
will be represented and implemented. The design and layout elements of the prospective system
can be determined. Additionally, for this, we can make use of Unified Modelling Language
(UML) diagrams, such as an activity, sequence or use case diagram. This can help the developers
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to visualise the overall system architecture as well as to serve as a plan or blueprint for them to
convert into code which they can develop. These diagrams also showcase the operations that can
be performed on the web system and the flow between actions. These designs can be found in
section 3.7 and 3.8 of this planning document. As per the work plan in the activity log, a total of
3 weeks are allotted for this designing phase to create the required designs to plan out the
envisioned web app system and its operations and logic flow in a graphical or visual format
before progressing to the subsequent stage.

Development Phase
In the development or implementation stage, as the name suggests, the system functionality and
requirements mentioned before are realised and implemented. Using the tools mentioned in this
planning document, the system is developed according to the specifications defined before and
following the system design in the previous stage, which acts as reference points. The system
functionalities from before are split into smaller units and iteratively developed and evaluated to
ensure their fulfilling requirements and expectations and are functional. Hence, it is evident that
this stage requires the longest time and forms the bulk effort of this project’s focus. For this
project, the different ML algorithms will be developed first using the Python programming
language and the scikit-learn library and then the web application that will be housing the chosen
best performing ML algorithm will be implemented using the Django web framework. Hence, as
per the work plan in the activity log, a total of 8 weeks are allotted for this development phase to
ensure the individual units are developed correctly following the requirements and the initial
expectations. Simultaneously, testing is performed to ensure the developed components are
functional and to resolve any errors before progressing with any of the future stages of the
development and the project.

Testing Phase
Towards the end of the software development lifecycle, the developed system is evaluated in
terms of some predefined evaluation metrics or test cases by internal and external testers. For our
project, we have two main components to test, which are the ML models as well as the web app
that houses the chosen best model. For evaluating the ML models, we use evaluation metrics
such as accuracy, f-score, sensitivity and specificity which is explained further in the Testing
section. From there, we can determine the best performing model that is then chosen for the next
stage to be integrated with the web application. As for the web application, we test its system
functionalities to ensure they are working as intended and the non-functional requirements are
fulfilled. For this user acceptance testing can be performed to test the system from the end-users
perspective and to ensure the interactions are seamless, error-free and as envisioned when
preparing the SRS and system design. This stage is performed once all the system functionalities
have been developed and implemented. Hence, any issues or bugs with the system are identified
and resolved at this stage of the SDLC and if the program is not working to expectation
backtracking to the development phase may be required to ensure the system is functioning as
intended. This stage is crucial to ensure that our initial expectations or requirements of the
system are correctly implemented without any errors and so the end-user does not experience
bugs when interacting with our system. Once all the tests have been passed, all components of
the system will then be combined into a unified system, forming the final product. For this there
are three forms of testing that are proposed and will be prioritised as seen in the System Testing
Plan (3.10), which include unit testing, integration testing and user acceptance testing (UAT)
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with beta testing and how we aim to perform the testing of the system components. As per the
work plan in the activity log, tentatively 1 week is allotted for this testing phase, however, there
are testing steps interleaved with the development steps. Therefore, after the development of the
main components and the secondary components, there will be a round of unit testing conducted
to ensure the developed components are functional and fulfil the initial expectations and
requirements. This 1 week of testing phase, includes among the final rounds of testing of the
system to ensure the system is functional before being deployed to the Firebase server platform
to test the integration between the web app and ML components and a user acceptance testing
and beta testing to validate the system from the end-users’ perspective.

Deployment Phase
This final phase involves the deployment, continuous operation and maintenance of the
developed system. Therefore, once the developed system’s components fulfil our predetermined
system functional and non-functional requirements and have been implemented as intended, the
components have to be unified or integrated into one system. For our system, that would be
integrating or deploying the chosen best ML model with the developed web application to ensure
that our heart disease prediction/classification system is easily accessible for the end-user, simply
by accessing it through their web browser. Additionally, the final integrated system will be
deployed to the Firebase Realtime Database platform. The platform will be developed with
correct configurations and the final system is deployed to the designed and developed server.
This stage will ensure the system is accessible to the general public through the search engine
and web browser and ensure the performance of the system is consistent and stable.
Simultaneously, the web system should be tested and evaluated to ensure that it remains
functional and working as intended, else appropriate debugging measures should be performed.
As mentioned earlier in the project limitations, as this study and project is only for research
purposes, at its current iteration the system will not be deployed commercially or for real-world
usage to make definitive diagnosis or medical decisions. In conjunction with that, maintenance is
performed to ensure the website remains functional for the end-user to resolve any bugs or issues
with the platform as well as to incorporate updates to introduce new features or improvements to
the system functionality. As per the work plan in the activity log, a total of 4 weeks are allotted
for this deployment, operation and maintenance phase to ensure it is completed and checked
thoroughly before it can be cleared for end-user usage or in this case, for the submission of the
capstone 2 project.

3.4 Machine Learning Implementation
3.4.1 Data Acquisition and Dataset Description
The dataset chosen for this comparative analysis of ML algorithms is a combination of four heart
disease datasets from the University of California Irvine (UCI) Heart Disease dataset [41], which
was abled to be merged, as there were similarities in the attributes of each dataset. Therefore, this
UCI heart disease dataset consists of four separate datasets, with data collected from four
locations and created by:

● Hungarian Institute of Cardiology. Budapest: Andras Janosi, M.D.
● University Hospital, Zurich, Switzerland: William Steinbrunn, M.D.
● University Hospital, Basel, Switzerland: Matthias Pfisterer, M.D.
● V.A. Medical Center, Long Beach and Cleveland Clinic Foundation: Robert Detrano,

M.D., Ph.D.
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This combination of UCI datasets were found ideal and chosen, after downloading and viewing
each of the previously mentioned four datasets, in the planning stage. From my study of the
datasets, to summarise, the MLDataR dataset was specific to the R language, and would require
additional processing before it could be suitable to our comparative analysis, which is primarily
using the Python programming language. Whereas the Frammingham dataset, although is ideal
with an admirable number of records and attributes, the attributes were found to be limited or
basic, concerning demographic information such as alcohol intake and physical health, whereas
the UCI dataset, had those demographic information along with key medical data from sensory
equipment, including ECG data. Thus, when studying the correlation of the attributes in this
dataset, it was found that there is not strong correlation between the attributes and the target, as
seen with the UCI dataset, and will be explored and explained in more detail. Nonetheless, this
dataset would be kept as a secondary dataset for our future works to further improve the
algorithm by considering more features. Finally the Z-Alizadeh Sani dataset, although had a
good number of attributes, had lesser number of records that could be used to sufficiently train
and test our ML algorithms, as compared to the UCI dataset.

Therefore, the four UCI datasets were merged. Then, duplicate rows were identified and
removed, producing 920 usable rows. Originally, this dataset consists of 76 attributes, but similar
published studies relating to the use of this dataset only consider a subset of around 14 attributes,
as discovered during our literature review. This was further reinstated by the creators of the
dataset through a note at the UCI data repository. Additionally, a simple preliminary correlation
study was also performed on the attributes of this raw dataset on its target, to confirm this
assumption. Rightly so, it was found that there were 16 attributes we found that had moderate to
strong correlation with the target attribute that could be further studied or utilised to train the ML
model. This is the first form of feature selection that was performed, where based on the
correlation score, the attributes that have an impact on the output or target are found and these
features would be considered for the development of the ML models. Hence, the following table
shows the 16 attributes that are part of the final dataset.csv file with the removed duplicate rows
and the optimal selected features that was loaded into the Python program and further ML
processing was performed on, along with the reason for choosing them apart from having a
strong correlation score with the target attribute:

Table II
Dataset description

Attribute name Feature
Values

Description Data Type Reason For Choosing This Feature

id 0 - 919 Unique id for each
patient. 920 records
in the final dataset.

Numerical,
int

For identifying each record.
Removed before conducting further
processing or ML algorithm as it
doesn’t correlate with the target and
is simply to uniquely identify each
row.

age 28 - 77 Age of the patient in Numerical, With the risk of developing
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years int cardiovascular or heart diseases
roughly tripling with each decade of
life, age is a significant risk factor. In
adolescence, coronary fatty streaks
can start to develop. According to
estimates, 65 and older people make
up 82 percent of coronary heart
disease fatalities. The risk of stroke
also doubles every ten years after
age 55 [27].

sex 0: Female, 1:
Male

Sex of the patient Categorical,
object

In general, men have a higher risk of
developing heart disease than do
women before menopause. Although
more recent data from the WHO and
UN refute this, it has been argued
that a woman's risk after menopause
is comparable to a man's. Compared
to a male with diabetes, a female has
a higher risk of developing heart
disease [29].

dataset Cleveland,
Hungary,
Switzerland,
VA Long
Beach

Place of study Categorical,
object

For identifying source of each
record. Removed before conducting
further processing or ML algorithm
as it doesn’t correlate with the target
and is simply to identify the source
of each row.

cp 0: typical
angina, 1:
atypical
angina, 2:
non-anginal,
3:
asymptomati
c

Chest pain type

Typical angina:
chest pain related to
reduction of blood
supply to the heart
Atypical angina:
non-heart related
chest pain
Non-anginal pain:
generally esophageal
spasms (non-heart
related)
Asymptomatic:
chest pain that
generally does not
display signs or

Categorical,
object

Angina is a type of chest pain or
discomfort brought on by a lack of
oxygen-rich blood to the heart
muscle [30]. The sensation in your
chest might be one of pressure or
squeezing. Your neck, jaw,
shoulders, arms, or back may also
feel uncomfortable. Even the pain
from angina can resemble
indigestion.
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symptoms of disease

trestbps 80 - 200 Resting blood
pressure, (in mm
Hg). Values
exceeding above
130-140 are
generally cause for
concern.

Numerical,
int

The arteries that supply your heart
can become damaged over time by
high blood pressure [27]. Your risk is
even higher if you have high blood
pressure along with another
condition, such as diabetes, high
cholesterol, or obesity.

chol 85 - 603 Serum cholestrol (in
mg/dl)
serum = LDL +
HDL + .2 *
triglycerides

Values exceeding
above 200 is
generally cause for
concern

Numerical,
int

The most likely cause of artery
narrowing is a high level of
low-density lipoprotein (LDL)
cholesterol, also known as "bad"
cholesterol. Your risk of a heart
attack is also increased by having
high blood levels of triglycerides, a
type of blood fat connected to your
diet. Nonetheless, high-density
lipoprotein (HDL) cholesterol, or the
"good" cholesterol, reduces your risk
of having a heart attack [32].

fbs 0 (FALSE):
> 120 mg/dl,
1 (TRUE): <
120 mg/dl

Fasting blood sugar.
Compares an
individual's fasting
blood sugar value of
120mg/dL.

Values exceeding
126 mg/dL generally
signals diabetes.

Categorical,
object

Your body's blood sugar levels rise
as a result of insufficient pancreatic
hormone production or improper
insulin response, which raises your
risk of having a heart attack [30].

restecg 0: normal, 1:
ST-T wave
abnormality,
2: ventricular
hypertrophy

Resting
electrocardiographic
(ECG) results

0: Nothing to note

1: ST-T Wave
abnormality,
can vary from minor
symptoms to serious
issues. Indicates an
abnormal heartbeat.
(T wave inversions

Categorical,
object

The United States Preventive
Services Taskforce (USPSTF) comes
to the conclusion that the potential
risks of screening with a resting or
exercise ECG are equal to or greater
than the potential benefits for people
at low risk of cardiovascular disease
[33]. There is currently insufficient
evidence to determine the balance
between screening's advantages and
disadvantages for those at
intermediate to high risk.
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and/or ST elevation
or depression of >
0.05 mV)

2: Left ventricular
hypertrophy, either
probable or certain
by Estes' criteria.
Expanded main
pumping chamber of
the heart.

thalch 60 - 202 Maximum heart rate
achieved. (beats per
minute)

Numerical,
int

The increase in cardiovascular risk,
associated with the acceleration of
heart rate, was comparable to the
increase in risk observed with high
blood pressure. It has been shown
that an increase in heart rate by 10
beats per minute was associated with
an increase in the risk of cardiac
death by at least 20%, and this
increase in the risk is similar to the
one observed with an increase in
systolic blood pressure by 10 mm Hg
[30].

exang 0: FALSE, 1:
TRUE

Exercise induced
angina.

Categorical,
object

Angina can cause mild to severe pain
or discomfort that typically feels
tight, gripping, or squeezing [30].
Angina is typically felt in the middle
of the chest, but it can also affect one
or both shoulders, as well as your
back, neck, jaw, arm or hands.

Types of Angina i. Stable Angina /
Angina Pectoris

ii. Unstable Angina

iii. Variant (Prinzmetal) Angina

iv. Microvascular Angina.

oldpeak -2.6 - 6.02 ST depression
induced by exercise
relative to rest.

Numerical,
float

When exercising, a heart that is
unhealthy will be under more stress.
Thus, this is a key indicator of
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prevalent heart disease in a patient.

slope 0: upsloping,
1: flat, 2:
downsloping

Slope of the peak
exercise ST
segment.

Upsloping:
improved heart rate
with exercise
(uncommon)

Flatsloping: less
alteration (typical
healthy heart)

Downsloping:
Indications of an
unhealthy heart.

Categorical,
object

When the ST-segment depression is
flat or downward-sloping and is
greater than 1 mm 60–80 ms after
the J point, the treadmill ECG stress
test is deemed abnormal. Exercise
ECGs that exhibit up-sloping
ST-segment depressions are
frequently classified as "equivocal"
tests.  In general, a worse prognosis
and a greater likelihood of
multi-vessel disease are indicated by
the presence of horizontal or
down-sloping ST-segment
depression at a lower workload
(calculated in METs) or heart rate
[33].
The length of the ST-segment
depression is also crucial because a
prolonged period of recovery
following a stressful event is
consistent with a successful treadmill
ECG stress test. The presence of
ST-segment elevation > 1 mm, which
frequently indicates transmural
ischemia, is another finding that is
highly suggestive of significant
CAD; these patients are frequently
urgently referred for coronary
angiography [31].

ca 0-3 Number of major
vessels (0-3) colored
by fluoroscopy.

Categorical,
object

A colored vessel indicates that the
physician can see the blood flowing
through it. The more blood
movement, the better, indicating
absence of clots and better heart
health [41].

thal 0: normal, 1:
fixed defect,
2: reversable
defect

Thalium stress test.
Shows the
thalassemia level.

0: Normal
1: Previously
defective but now

Categorical,
object

Thalassemia is an inherited blood
disorder that causes your body to
have less hemoglobin than usual.
Thus, it has correlations with the
likelihood for a patient to develop
heart disease [30].
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okay
2: Improper blood
flow during exercise
target

num (Target) 0-4 The predicted target
attribute. The level
or degree of heart
disease in the
patient.

0 = absence of heart
disease
1, 2, 3 = presence of
heart disease

Categorical,
object

This is a multivalued target attribute,
that is crucial at is the output that is
aimed to be predicted based on the
input of the rest of the attributes.

After the dataset has been prepared, it is loaded into the Python program using the read_csv
method of the Pandas library, allowing to read and import the UCI-published heart disease
dataset in *.csv (comma-separated value) file format and stored in a Dataframe object. The main
Pandas data structure is the DataFrame object, which is a two-dimensional table with labelled
axes running along the rows and columns. From there, the Pandas dataframe can be used to
perform a variety of data manipulation operations along rows and columns.

3.4.2 Data Understanding and Visualisation
Data understanding is where exploratory data analysis (EDA) is performed on the collected data
to understand the distribution of the attributes of the data, identify its hidden patterns, discover
initial insight, as well as generating the data description (descriptive statistics) or key information
regarding the data’s attributes, such as the skewness, min, max, percentile values, measures of
central tendency (mean, median, mode) and measures of variability (range, interquartile range,
standard deviation, variance). Thus, enabling us to familiarise with the data.

This is the first part of the data preparation step that was performed, as EDA and data
understanding is a key step to the ML process in order to get meaningful results. It helps to
identify necessary data preprocessing steps that need to be performed in the following stage.
Additionally, through this step, we gain a better understanding of the dataset we are dealing with,
to better understand the problem domain, the data distribution (with the .info method), and the
patterns in the data (correlation).

First, the size of the dataset, we’re dealing with is identified, using the df.shape() method, that
returns the dataset’s number of rows (920 records) and columns (16 attributes). Following that,
the Pandas dataframe info() method returns preliminary general information about the
dataframe's number of columns and row entries, the number of non-null values, and the datatype
of the column’s values, as well as the memory size usage of the dataframe.
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Figure 5: Shape of the dataset and general info about dataset

Following that, descriptive statistics of the numeric columns in the dataset are produced using
the Pandas dataframe describe() method, which highlights the central tendency (mean score),
dispersion (standard deviation), and shape of a dataset's distribution (min, max, quartile, median,
third-quartile) while excluding NaN values.

Figure 6: Descriptive statistics of the dataset’s numerical attributes

Following that, the Pandas dataframe isna().sum() method returns the number of null values in
each attribute of the dataset. Thus, from here, we can see that owing to the presence of missing
values for some of the attributes, the missing values need to be treated to ensure that all records
have valid values to train and test the ML models, in this case, the chosen method is imputation.

After that, we identify whether there exists duplicate records in the dataset using the
df.duplicate() function. Here, it is seen that there is no duplicate records, so the removal of
duplicate rows was skipped.
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Next, univariate analysis, bivariate analysis, data visualization, and data analysis were performed
on the target variable as well as the other input attributes of the dataset. Exploratory Data
Analysis (EDA) uses visualization techniques to display or identify trends and patterns, hence,
the data are represented graphically. So, the main characteristics of the dataset are summarized
and patterns are sought using exploratory data analysis (EDA).

Univariate Plots
We start with univariate plots of the dataset’s attributes, to understand each one’s distribution and
identify whether preprocessing on individual attributes is necessary, for instance outlier removal
or missing value imputation.

Firstly, we view the distribution of the target attribute, num, which is the level of heart disease a
patient possesses, using the df["num"].value_counts() statement. This will let us know whether
the target attribute values are balanced and suitable for further processing with the ML models.
Rightly so, based on the results, it shows that the values are balanced between the 5 classes,
according to the real-life context. This can be further verified by grouping the classes of the
attribute, where 0 denotes the absence of heart disease and 1,2,3,4 denote the presence of heart
disease. So, with this a separate column is created in the dataset, “hd”, to observe the distribution
of the presence and absence of heart disease amongst the patients in the dataset, and this
information can be used together with the other attributes in the dataset, to see their correlation
with this “hd” attribute.

Moving on, a density plot (df.plot(kind= “density”), Pandas dataframe method) is used to
visualise the distribution of the numerical attributes of the dataset, namely, age, resting blood
pressure, cholesterol, maximum heart rate, ST depression, and number of fluoroscopy-colored
major blood vessels. From here, the plots show an almost normal bell-shaped curve, showing
that the numeric attributes are normally distributed, except for a slight deviation with the oldpeak
and cholesterol attributes, but doesn't necessitate removal of outlier values, as they are valid
values looking at the context, where cholesterol and oldpeak values at that rate is possible. For
instance there is a potential outlier with cholesterol value greater than 500, which is checked, and
then observed to be usual.
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Figure 7: Univariate plots of density graphs of the dataset’s numerical attributes

Meanwhile for the categorical attributes of the dataset, a bar chart is constructed of the frequency
of the feature values for that particular attribute using the Pandas dataframe method,
df.plot(kind= “box”). These categorical attributes include the patient’s gender, location or source
of the dataset, chess pain type, fasting blood sugar level, rest ECG rate,exercised induced angina
level, slope of peak exercise ST segment, and thalium stress test. By looking at these
distributions, we can judge whether the data is balanced between the classes of the attributes and
whether any data balancing is in order. From looking at the distribution, there is not any large
distinction in the frequencies, that is abnormal with its real-life context, thus no data balancing is
required to be performed on these categorical data.
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Figure 8: Univariate plots of bar charts of the dataset’s categorical attributes

Based on these univariate plots, some findings can be derived from analysing the visual
diagrams. Some of the categorical variables (Sex, Chest Pain Type) are represented in textual
form, which would be better to be represented in numeric form for the algorithm to understand
the inputs better and perform more accurate processing. Thus, one hot encoding is ideal for these
categorical data, as there is less number of classes, and so the number of dummy variables that
will be generated will not be too overwhelming on the program memory space consumption.
Also, there are no significant outliers looking at the individual distribution bar charts and density
graphs.

Furthermore, boxplots were used to visualise the distribution or scale of the numerical attributes
of the dataset, especially when placed next to or comparing with the other attributes. This can
also help us to identify outliers present in the data. From looking at the boxplots, it is clear that
scaling is required to ensure the data is distributed consistently across the numeric attributes, to
ensure more accurate processing of this data by the machine learning models. Currently, the data
appears to be skewed for attributes such as oldpeak, chol, trestbps, and thalch, hence requiring
scaling, preferably min-max scaling, which scales the data based on the range of the attributes.
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Figure 9: Univariate plots of box plots of the dataset’s numerical attributes

Multivariate Plots
Then for the multivariate plots, heatmaps are used, as it is a great way of representing
correlation between the target variable “num” and the numerical input attributes, visually.
Visualizing the data features to find the correlation between them which will infer the important
features. Therefore, for this classification problem, a correlation matrix can be developed which
illustrates the relations or degree of association between the attributes or features to one another
and the target value, which according to the chosen dataset, is the “num” (attribute 58) attribute.
From there we can determine what features we can exclude from the subsequent processing
phases and what crucial features should be maintained. There are other tests that can also be
performed such as univariate testing to find the p-value of the features to determine whether they
are significant (for p<0.05). However, for this project, this was not conducted to reduce the
complexity of the program and the correlation matrix relayed sufficient information regarding
the feature importance of the dataset.

The color-coded plot for the 2-D matrix data is provided by the Seaborn heatmap API, whereas
pairwise correlation (correlation of the two variables in a matrix) of the dataframe's columns is
provided by the Pandas dataframe corr() method. This method excludes NA or null values.
Hence, using this method, we can identify both strong and weak correlations between the various
columns and the target variable, as well as positive and negative correlations between the
individual numerical attributes. This can help us in feature selection, as features that are weakly
correlated can be disregarded, whereas strong features can be prioritised. Model predictions can
be described using positive and negative correlations, where positive correlation suggests that
when one variable's value increases, the other variable's value should increase as well.
Conversely, if there is a negative correlation, it means that as the value of one variable decreases,
so does the value of the other variable. There is no linear relationship between the variables if
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there is zero correlation. The attributes used in the Seaborn heatmap method include the annot
parameter set to True, so each cell is labelled with the corresponding correlation value, and the
linewidth specifies the width of the line separating each cell of the matrix.

Figure 10: Multivariate plots in heatmap form of numerical attributes with the target “num”

Additionally, due to the high amount of attributes in the dataframe, it may look slightly cluttered
Hence, a barchart with the attribute’s correlations with the target attribute, num, has been added
and sorted accordingly.
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Figure 11: Multivariate plots in bar chart form of numerical attributes with the target

For the other categorical attributes, bar charts can be plotted to compare the individual feature
values and its correlation with the heart disease level or the target, which can be obtained using
the Pandas dataframe, crosstab() method. Thus, this can provide a clear comparison of the
dataset attributes classes and their relation with the target attribute (num), which is the level of
heart disease a person possesses.

Figure 12: Multivariate plots in bar chart form of individual categorical attributes with the target
“num”

Based on the multivariate plots, there are a few inferences that can be made. The dataset and id
attributes were removed as they were found to be no strong correlation with the target attribute.
Additionally, the “hd” attribute that was previously created, is not used in the further ML
processing steps as we only require one target attribute to be studied, which is the “num”
attribute that convey more information, which is the presence of heart disease as well as its
degree or level in a particular patient.

Only thalch (maximum heart rate) and cholesterol has a negative correlation with HeartDisease,
while the majority of features have a moderate to strong positive correlation (more than 0.1) with
HeartDisease. According to correlation studies, there is a strong positive correlation between
heart disease and the type of chest pain, the maximum heart rate, and the
slope_peak_exercise_ST. However, there is a significant inverse relationship between heart
disease and the number of major vessels, ST depression, and exercise-induced angina.
Maximum heart rate, type of chest pain, and slope-peak exercise ST are strongly correlated with
heart disease in men, whereas number of major vessels, ST depression, and exercise-induced
angina are strongly inversely correlated. For women, however, there is a strong inverse
relationship between heart disease and the number of major vessels, ST depression, and
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exercise-induced angina. Nevertheless, overall, from the dataset, it is seen that males are more
susceptible to heart disease than females.

Looking at the frequency plot of ECG results type against different heart disease levels, st-t
abnormality and lv-hypertrophy, which are conditions denoting non-normal heartbeat, ranging
from mild symptoms to severe issues, have less patients with no disease, indicating a high
likelihood of the presence of HD.

Additionally, the plot for thallium stress test against different heart disease levels, indicates
patients with a normal thalium level, are more likely to not have heart diseases, signified by the
blue column spike in that group. Whereas patients with a thal value equivalent to fixed defect,
which means there used to be a defect in this department, but is currently normal, are also more
likely to have heart disease.

Another attribute to watch is the chess pain type which has a strong correlation with the presence
of heart disease and the heart disease level from seeing its bar chart plot. The majority of patients
with heart disease are discovered to have asymptomatic chest pain. These individuals may
exhibit unusual symptoms like indigestion, the flu, or a pulled chest muscle. As with any heart
attack, an asymptomatic attack involves a blockage of the blood supply to your heart and
potential heart muscle damage. The same risk factors apply to heart attacks without symptoms as
they do to heart attacks with symptoms. An asymptomatic heart attack increases your risk of
another, potentially fatal heart attack. Your risk of complications, such as heart failure, increases
if you experience another heart attack. There is no test that can predict whether you will
experience an asymptomatic heart attack. An electrocardiogram or echocardiogram is the only
way to determine whether you had an asymptomatic attack which can reveal alterations that
denote a heart attack.

For the exang attribute, exercise-induced angina, patients with the value of false, significantly
have less chance of developing heart disease than patients with a value of true for
exercise-induced angina, signified by the spike of the blue bar in the “false” group.

Looking at the slope attribute or the slope of the peak exercise ST segment, patients with a
downsloping, which are typical signs of an unhealthy heart, are more likely to have heart disease
than people with slope value equal to upsloping, indicating better heart rate with excercise, or
flatsloping which indicates minimal change or a typical healthy heart. This can be seen with the
very low blue bar height with the downsloping class, indicating a higher percentage or likelihood
of heart disease presence. Similarly, ST depression or the oldpeak attribute is also a good factor
contributing to heart health, where patients with a lower ST depression, results in more
likelihood to develop heart disease, hence a strong positive correlation can be seen in the
heatmap and correlation bar graph.

For the ca attribute or the number of major vessels coloured by fluoroscopy, as there are more
blood vessels and more blood movement to the heart, indicates a patient with a better heart
health. Hence, patients with a ca value equivalent to 0 have more probability to develop or
possess heart disease.
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For the resting blood pressure attribute, values exceeding 130 and 140 mm Hg are a typical cause
for concern for heart disease development. Similarly, serum cholesterol levels exceeding 200
mg/dl are also typically strong factors for heart disease.

Heart disease is very prevalent in seniors, defined as those who are 60 years of age and older, as
well as among adults who fall within the age range of 41 to 60. However, it's uncommon among
people aged 19 to 40 and extremely uncommon among those aged 0 to 18, as there are no
records of such patients with heart disease in the dataset.

Overall, these are strong features that can be prioritised to be used in the following ML
processing. We must modify the features in the following data preprocessing step, once we have
obtained the insights from the data in order for the model-building phase to proceed.

3.4.3 Data Cleaning
As for data preparation, this involves preparing the initial raw data sourced directly from the data
source into a final data set that can be utilised for the subsequent phases of processing. Here, the
collected datasets may contain faults, missing/incomplete information, obsolete/redundancies,
noise/outliers, values in a form not suitable for processing or not consistent with the context or
problem domain, and other problems that can affect the training and testing process of the ML
model. Noisy data is essentially, random errors present in the dataset, whether it is data that is
duplicated, incorrectly entered, incorrectly processed, or outliers. The latter entails extreme
values that can be difficult for the program to handle, affecting the central tendency of the data
distribution in an attribute.

Dropping Unnecessary Attributes in the Dataset
The first step performed for this section, dropping the attributes that are unnecessary to be used
for the further ML processing. Thus, from the previous section, it is determined that the id,
dataset, and HD attributes are no longer required, as they do not significantly impact the ML
processing as they have a weak correlation with the target “num”. Although HD has a strong
positive correlation with HD, it is removed because HD is another target attribute, but conveys
less information than the num attribute, as mentioned previously, num conveys the presence and
level of heart disease, whereas HD only describes the former.

Partitioning the Dataset
Following that, the data is partitioned into 2 sections, the target attribute, y which consists of the
num attribute and the input attribute, xtr, which consists of the other attributes in the dataset.

For this, the integer-location-based indexing ‘iloc’ pandas DataFrame method is utilised on the
dataset where the first 13 columns are separated as the x or xtr subset, and the last 14th column is
utilised as the target variable. This will be further split later on, into a training and testing dataset
used to build and validate our ML models.

Converting Categorical Attributes into Numerical
After that, it is found that some attributes in the dataset have values in a string format, which
may be difficult to be interpreted by the program and the ML models. Thus, these
object/categorical datatype values need to be converted into an integer and float datatype. For
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this two methods were tested namely the scikit-learn preprocessing method, LabelEncoder, and
the pandas DataFrame method, get_dummies.

The former was applied using a for loop, so that it only applies to a column with categorical or
object datatype values, and it essentially performs integer encoding, by converting each value in
that column into a numerical value, based on the classes within that attribute, hence converted to
1 attribute, with the classes being labelled by 0 to the n_class value. Utilizing numbers has the
drawback of introducing comparison and relation between them, and that it can be misinterpreted
by the ML algorithms as having a hierarchy or order between the classes. Additionally, it is only
a preferable option when there are numerous classes within a particular categorical attribute,
which is not the case as previously analysed with the current dataset. In fact, even in the official
documentation for the LabelEncoder method in scikit-learn, this method is only recommended to
be applied to the target attribute.

The latter method, df.get_dummies(), is a one-hot encoding method, that aims to alleviate the
downside of the previous LabelEncoder method, by converting the categorical attributes into a
number of new columns, based on the number of classes, and assigned a binary value of 1 (True)
or 0 (False) to the new column. Therefore, no ordinal relationship exists in between the newly
formed attributes or classes within a parent attribute which typically results in the ML models
performing better as they can understand and interpret the input attributes more correctly and
accurately. The only downside to this method is that it creates too many new columns after the
one-hot encoding process. However, after analysing our dataset, this is found to be not a
significant issue, as there are only a few classes (2-5), for the categorical attributes in the dataset.
Additionally, to support this assumption, both the different preprocessing methods were
implemented, applied to the dataset, and ran through the ML models to understand the
differences in the final model validation results, and whether they had an impact or effect on the
results. As previously assumed, the df.get_dummies() method was seen to be returning generally
better final evaluation results of the ML models, as compared to when the LabelEncoder method
was implemented, so, the former was implemented and used for further processing.

Replacing Missing Values in the Dataset, Imputation
From the previous, of understanding the dataset and viewing its missing values, we found that
certain attributes contain missing values. So for this, the chosen method is imputation, a common
way this is implemented is to impute or replace the missing values, rather than removing those
records. For this, the scikit-learn impute method, KNNImputer was used which replaces missing
values with a value that is found using the k-Nearest Neighbours method. Thus, the mean value
from the n_neighbors nearest neighbours found in the training set is used to impute the missing
values for each sample. Therefore, this method is more preferable compared to replacing the
missing value with the mode or mean of the dataset, as the missing values are replaced with the
mean/average value from the n records that are nearest to it.

The parameters tested and found to be optimal for this KNNImputer function is the n_neighbors
parameter at its default value, 5. Thus, it was implemented and applied to the dataset, and
afterwards, the null values in the dataset are identified again, using the previous df.isnull()
method, and it is found that the dataset no longer contains any missing values, so the imputation
was done successfully.
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Using SMOTE as Resampling Technique to Handle Imbalanced Data
This following preprocessing step was found to have a positive impact on the final evaluation
results from validating the ML models, thus it was kept in the final program. Essentially it was
found that some of the attributes in the dataset contained slight imbalances, thus to treat this,
resampling techniques can be employed to handle imbalanced data.

Class imbalance occurs when there is an unequal distribution of classes in a dataset, meaning that
there are significantly more data points in the negative class (majority class) than in the positive
class (minority class). The classifier model's performance will suffer if the skewed data is not
corrected beforehand.

One of the most frequently chosen methods for dealing with an unbalanced dataset is resampling
the data. For this, there are primarily two types of methods: undersampling and oversampling.
Oversampling methods are generally preferred to undersampling ones. The reason is that when
we undersample, we frequently leave out instances from the data that could contain crucial
information. Therefore, for our implementation the Synthetic Minority Oversampling Technique
(SMOTE) method of the imblearn oversampling library is utilised

carries out data augmentation by constructing artificial data points based on the original data
points. SMOTE can be viewed as an improved form of oversampling or as a particular data
augmentation algorithm. With SMOTE, you avoid producing duplicate data points and instead
produce synthetic data points that are marginally different from the original data points. It is an
oversampling technique where synthetic samples are created for the minority classes, by
performing oversampling in a structured manner. This overcomes the overfitting problem caused
by otherwise random oversampling methods.

The operation of the SMOTE algorithm can be summarised as balancing the dataset by slightly
moving the data point closer to its neighbour, following the k-nearest neigbour method. By doing
this, it ensures that the synthetic data points do not exactly duplicate an existing data point, and
that it also does not deviate significantly from the known observations in your minority class.

Therefore, the SMOTE method is first instantiated with the sampling strategy being the default
“not majority”, which resamples all classes but the majority class, then fitten onto the previously
partitioned, x and y datasets. After that the distribution of the target attribute is viewed, and it is
found that the data is more balanced after the action of SMOTE.

Data Scaling Using Min-Max Normalisation
From previously analysing the numerical attributes of the dataset, it is found that different
numerical attributes have a different range, and this needs to be standardised or normalised
before being used before fitting with the ML models. For this, the min-max normalisation was
found to be producing the ML models with the best evaluation metric results. Through this
method, the features will be transformed into a range between 0 and 1, where the minimum and
maximum value for a particular feature being 0 and 1, respectively. The data in the dataset is
scaled to a specific range, based on the attribute’s minimum and maximum value. This is
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opposed to standard scaling where data are scaled based on standard normal distribution (mean =
0 and standard deviation = 1). Thus, keeping to the context of the dataset.

So, this scaled value proportionate to the range of the feature, can be calculated using the
following formula:

Figure 13: The mathematical formulation for the min-max scaling

The importance of this normalisation/standardisation method is seen as the variables prior to
scaling is measured to be at different scales, and so individually they do not contribute equally to
the model fitting, leading to bias where one attribute might influence the ML model’s decision
making more than another. Additionally, scaling the dataset in this manner can aid in enhancing
the speed effectiveness and efficiency of algorithm execution. As a result of the data's
already-reduced size, complicated calculations, which are primarily needed to improve
algorithms, take less time.

When input features are scaled (or generally scaled) instead of using the original, unscaled data,
some ML models, such as the Multi-layer Perceptrons (MLP) or ANN, may benefit greatly from
this. In these cases, the back-propagation may be more stable and even faster. While scaling is
typically not a factor in tree-based models, it is frequently a major factor in non-tree models like
SVM, LDA, etc.

Therefore, to handle the issue of feature-wise normalisation, the MinMaxScaler method of the
scikit-learn preprocessing library is utilised, by first instantiating it and then fitting it with the
input variables of the dataset, which computes the minimum and maximum to be used for further
scaling and transformation of the dataset.

After that, this fitted min-max scaler is pickled and stored using the joblib or pickle library
method, joblib.dump(), which is used to serialise or save the internal state of the scaler locally so
that it can be easily called when required later on, primarily in the web app implementation. This
is because otherwise, it would be time-consuming to retrain a new min-max scaler which can
delay the operation of the overall ML model computing, especially considering this ML model
being deployed in a web app format to return real-time results from input variables. Thus, it is
crucial to eliminate such time delay, in this case, by preserving the scaler to be reused.

Following that, the previously fitted scaler is used to transform the dataset’s input variables
where it scales features of the x or input attribute dataset according to the previously computed
feature range.

To visualise the effects of the preprocessing methods performed thus far, a statistical description
of the dataset is generated using the df.describe() method. From here, we can see that the
attributes of the dataset follow a consistent scale or range and so it is suitable to fit with the ML
models and be used for further processing.
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3.4.4 Dataset Splitting
After the dataset has been prepared, it needs to split into two parts, the training set which builds
the predictive models and the validation/testing set which is used to evaluate or test the ability of
the developed model to be generalised or its ability to classify inputs correctly. For instance if the
chosen data split ratio is 80:20, 80% of the data is used to train the ML models, whereas 20% is
used to evaluate the ML models.

It is important to ensure a split proportion where underfitting and overfitting does not occur or
the accuracy values or results for both sets are similar. Underfitting occurs when the performance
and results of the training set and test set are low typically because there are insufficient records
to train the model. Overfitting occurs when the training set results are significantly superior to
the testing set, as the ML model is too tailored or suited to the training set and performs poorly
on new data so it is not generalised enough to be used in real-world cases.

Therefore, the effect of different data partitioning ratios on the performance of the ML model
was tested to find the best combination with the least underfitting and overfitting. The tested split
proportions include 50:50, 60:40, 70:30, 80:20, and 90:10.

This data partitioning method was implemented using the train_test_split() function of the
Scikit-learn library, which will return a randomly assigned training and testing subsets for the x
and y datasets to be inserted into the ML model or for validating the models (total 4 returned
datasets), based on the entered transformed x and y datasets, according to the testing dataset size.
So, by entering 0.2 as the test_size, the split proportion of training and testing dataset will be
80:20.

3.4.5 Model Creation (Hyperparameter Tuning and Model Development and Training)
At this stage, we design and build our ML models, using the aforementioned algorithms in the
literature review (2.1.1-2.1.9) along with the XGBoost, ExtraTrees and StackingClassifier
algorithm, to be fit and tested with the prepared dataset and evaluate their performance. At the
initial stage, it is difficult to pinpoint which algorithm will perform the best for this problem
domain as when reviewed independently, no single model is superior to another, and it depends
on the problem domain and the dataset being fitted.

The list of tested and developed algorithms displays a good blend of simple linear (e.g., logistic
regression, XGBoost) and nonlinear algorithms (e.g., K-Means Clustering, Decision Trees,
Random Forest, ExtraTrees, KNN, Naive Bayes, SVM) as well as deep learning methods (e.g.,
ANN, RNN). Apart from applying a singular ML algorithm to the dataset, hybrid models are
designed, developed using the StackingClassifier method of the scikit-learn library, fitted and
tested with the dataset, which is essentially a combination or ensemble of several classification
algorithms as well as feature selection techniques in order to increase the prediction accuracy and
performance. Therefore, each of these linear and non-linear models will be developed using the
corresponding Scikit-Learn method, except for the XGBoost classifier, which is from the
XGBoost library.

First, the compare_models array is initialised, which will be used for the later stage of comparing
the models that have been developed and their validation results or evaluation metrics to
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determine the best-performing model. In total, there are over 17 machine-learning models (11
different ML algorithms) that are finally constructed, tested and compared.

Structure of the Model Creation and Validation Process
The model creation step for each of these models follows a similar structure or workflow, to
ensure consistency and the final results are comparable.

I. Hyperparameter Optimisation
This pipeline consists of first, printing the name of the model that is being developed. Then,
begins the hyperparameter optimisation or tuning step to improve the model’s prediction
accuracy and other evaluation metric results. This is done through finding the ideal combination
of parameter values that optimise or results in a model that has the best performance.

A hyperparameter is a parameter which possesses a value that is utilised to control the training
process of the ML model. Hence, hyperparameter optimisation is the process of selecting optimal
hyperparameters or the right combination of hyperparameters for model training that maximises
the model performance [40]. Therefore, the value of a model's hyperparameters has a significant
impact on its performance. Additionally, there is no way to know in advance the best values for
hyperparameters; therefore, in theory, we should try every possible value before settling on the
best ones.

One such way of finding the optimal hyperparameter combination is through the grid search
method, where a grid of possible hyperparameter values are created, and at every iteration, a
combination of hyperparameters are trialled in a specific orientation [37]. It fits the model at all
the possible hyperparameter combinations while keeping track of the performance, and finally,
the best model or best performant hyperparameter combination is returned. Hence, we use the
grid search method to automate the tuning of hyperparameters because doing so manually could
require a significant amount of time and resources. Additionally, this method performs the
hyperparameter testing of the models in a systematic manner, returning the best performing
parameter values after the round of testing, and to be used in the estimator and ML model.

Thus, in this program, the grid search method of hyperparameter optimisation is implemented
using the Scikit-Learn library’s GridSearchCV function that executes the exhaustive search for
every parameter set/combination in the grid for a particular estimator or ML model. This was
chosen over the RandomizedSearchCV. This is because with GridSearchCV, it attempts every
combination from the list of current hyper-parameter values and chooses the best combination
based on the cross-validation score. So, the downside is the fitting process requires a lot of time
because all possible combinations are tested, however, GridSearchCV is guaranteed to give us
the best hyper-parameters.

In contrast, RandomizedSearchCV tries a wide range of random value combinations, and
requires the quantity of iterations to be declared. The downside is it cannot guarantee to return
the best parameter combination because not all parameter values are tested, thus it is the
suggested choice for large datasets which has a high number of parameters to tune, and certain
combinations can be skipped. It excels at evaluating a broad range of values and typically finds a
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very good combination quickly. However, looking at this dataset and problem domain, the
dataset is manageable, in that it doesn’t have too many records or attributes, and the number of
parameters to be tested for the estimators have been defined and are not overwhelming to be
tested as well with the currently possessed hardware and resources. Overall, this proves why
GridSearchCV is the chosen mode of testing hyperparameters in this implementation.

Therefore, returning to the structure of the model creation, the pipeline, then initialises the
parameters dictionary, which consists of the parameters available for the particular model or
estimator that is being studied or built, and their possible values. For instance, for the SVC or
support vector machine method of the scikit-learn library, we chose to test the different possible
values for the kernel, C or regularisation strength, and the gamma parameters. In the source code,
you will see a second dictionary of parameters for every ML model that was designed, with
parameter fields having 1 value each. These parameters contain the most optimal values that
have been identified after the exhaustive operation of the GridSearchCV object. So, they are
hardcoded here simply for testing and validation purposes of the designed ML models, to speed
up its operation and execution of the GridSearchCV object, by narrowing down the values to the
most optimal ones that were previously identified, so the GridSearchCV does not have to begin
searching for the best parameter values all over again, as it is a rather time-consuming process, if
one simply only wants to run the program and see the performance metric values. If one wishes
to view the operation of hyperparameter tuning and to find the optimal hyperparameter values
again for a particular ML model, they can simply comment or remove the second parameter list.

The estimator to be used with the GridSearchCV object is initialised. This depends on which
estimator is currently being constructed and tested. No parameters are initialised for this
estimator object, as it is like a control subject, where the different parameters will be tested on it,
to determine the best combination. Then, the GridSearchCV object is initialised with the inputs
being the instantiated estimator, then the parameters dictionary, and then the verbose parameter
with value 2, which controls the verbosity or the amount of messages returned at each test run.
The GridSearchCV is then fitted with the training dataset, and this fit action will be repeated for
every set of the different parameter value combinations.

Once all the parameter combinations have been tested, the best-performing parameters are
extracted, identified and displayed, using the clf.best_params statement.

II. Model Initialisation, Fitting and Predicting
The next step of the pipeline or building the ML model is initialising the ML estimator again
using the previously found best-performing hyperparameters, fitting it with the training dataset,
using it to make predictions, and evaluating the performance of the models. Hence, first, similar
to before, using the corresponding scikit-learn method or object, the current ML estimator is
initialised with the best-performing parameters identified before, as the inputs. Then, the fit()
function is used to perform the model training, and the predict() function will be used together
with the testing set to observe the performance of the models, and to test for overfitting or
underfitting.
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Since we already know whether each patient has heart disease, we can use the data that is
currently available to train our prediction model. This procedure is also referred to as learning
and supervision. Then, the trained model is applied to predict whether users have heart disease.

During this, the duration or time taken to train the model and use the model for testing is tracked,
using the time.time() method.

III. Model Testing
Towards the end of the model creation structure, the modelValidation() function is called, which
is a user-defined function that takes in the value of the testing subset of the y or target attribute of
the dataset, the predicted y or target attribute (result of model.predict()), the tracked time, and the
name of the current estimator being studied. This function, contains the various ML model
evaluation tests from the scikit-learn metrics library, including classification_report,
accuracy_score, precision_score, recall_score, f1_score, mean_squared_error,
mean_absolute_error, matthews_corrcoef, and the user-defined methods to calculate the root
mean square error, misclassification rate, the training, testing and total time. Hence, all these
values are computed and then together with the model name, are appended to the previously
defined compare_models array, which will then be converted into a Pandas DataFrame, allowing
for easier visualisation and comparison of the different models and their evaluation results. It
also makes it easier to export the Pandas DataFrame into an excel file (.xlsx) for easier reading
and analysing.

Machine Learning Models That Were Built and Tested
This section provides a brief description of the structure, workflow and implementation for each
of the machine learning models that were developed and tested with the dataset. Additionally, the
different hyperparameters that were tested for each of the ML models are explained.

I. Support Vector Machine, SVC
For the Support Vector Machine (SVC) model, the SVC object of the scikit-learn svm library.
For more information, the operation and a general background of SVCs are explored in the
literature review section (2.1.5).

Briefly put, how SVCs of the scikit-learn library functions is by creating a hyperplane to divide
the various classes in a multidimensional space. Then, error minimization is accomplished by
SVM, which iteratively generates the optimal hyperplane. Overall, the main goal of SVM is to
identify the maximum marginal hyperplane (MMH) that best classifies the dataset.
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Figure 14: Support Vector Machine hyperplane identification

There are three components to this. Firstly the support vectors, data points which are closest to
the hyperplane. By using margin calculations, these points will more clearly define the dividing
line. A decision plane called a hyperplane divides up a collection of objects into different classes.
Thirdly a margin is the distance between the two lines on the closest class points. This is
calculated as the angle between the line and the nearest points or support vectors. A larger gap
between the classes is regarded as a good gap; a smaller gap is regarded as a bad gap.

Overall, the goal is to choose a hyperplane in the given dataset that has the largest margin
between support vectors.

There are three parameters of the SVC object that can be manipulated, and so are tested to find
the optimal values that result in the highest evaluation results, the kernel, C or regularisation and
gamma parameters.

Kernel
The kernel's primary job is to change the input data from the given dataset into the necessary
form. Hence, there are four functions that are tested in our implementation, including radial basis
function (RBF), polynomial, linear, and sigmoid. A non-linear hyperplane such as the one in our
problem domain, can benefit from polynomial and RBF. A separation line in a higher dimension
is preferably calculated using polynomial and RBF kernels. Additionally, it is advisable to use a
more complex kernel in some applications to separate the curvy or nonlinear classes. Through
this, improved classifiers may result from this transformation.

Regularization
For scikit-learn objects, the regularization parameter is represented by C, which is used to
maintain regularization. Here, C stands for the penalty parameter, which stands for the
misclassification or error term. The possible values that are tested for this include 0.1, 0.5, 1, 2,
5, 10, 20. The SVM optimization is informed by the misclassification or error term regarding the
acceptable level of error. With this, you can manage the trade-off between the decision boundary
and the misclassification term. Hence, larger values of C result in larger-margin hyperplanes,
while smaller values of C result in smaller-margin hyperplanes.
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Gamma
A lower gamma value results in a loose or generalised fit to the training dataset, whereas a higher
gamma value results in an exact fit, leading to over-fitting. In other words, you could say that a
low gamma value only takes into account nearby points when determining the separation line,
whereas a high gamma value takes into account all of the data points. The tested gamma values
were 0.001, 0.01, 0.1, 0.25, 0.5, 0.75, and 1.

Hence, based on the GridSearchCV operation, it was found that the best performing
hyperparameters was the rbf kernel, 1 value for gamma, and 20 value for the regularization.

II. K-Nearest Neighbours, KNN
For the K-Nearest Neighbours, (KNN) model, the KNeighborsClassifier object of the scikit-learn
neighbors library was utilised for its implementation. For more information, the operation and a
general background of KNNs are explored in the literature review section (2.1.6).

The KNeighborsClassifier object functions by finding the K closest points to a particular record
based on the euclidean distance formula, and then classifying it based on the majority in the
K-nearest neighbouring points. Therefore, the number of neighbors or K, is a key parameter in
this model for determining the performance of the model. This K value is typically an odd
number to allow for a majority to be found within the class labels to be assigned to the current
point to be classified.
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Figure 15: K-Nearest Neighbour algorithm operation

Therefore, there are two parameters of the KNeighborsClassifier object that can be manipulated,
the kernel, n_neighbors or the number of neighbours (K) and the weights.

Number of Neighbours, K
As mentioned earlier the n_neighbors value denotes the number of neighbouring records to
consider, when determining the label of the current record. So, this value is typically an odd
number to allow for the majority to be from the same class and the number of points from two
class being split evenly. So, for this, the values that were tested include 3, 5, 7, 9, 11, 13, 15, 17,
19, 21, 23, 25, 27, and 29.

Weights
The weight parameter specifies the weight function used in the prediction, whether there is any
distinction between any points, respective to weight or importance. Thus, this can be set to
“uniform” and so all points will possess equal weights or importance. Otherwise, it can be set to
“distance” where the weights are inversely proportional to the points’ distance to that neighbour.
So, the closer a neighbour is to a particular selected point, this will have a greater influence than
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neighbours that are further away. So, for this parameter, those were the 2 values that were tested,
uniform and distance.

Hence, based on the GridSearchCV operation, it was found that the best performing
hyperparameters were the 3 neighbours and weights value equivalent to the distance.

III. Naive Bayes, NB
For the Naive Bayes, (NB) model, the GaussianNB object of the scikit-learn naive_bayes library
was utilised for its implementation. For more information, the operation and a general
background of NBs are explored in the literature review section (2.1.3).

The GaussianNB object functions by calculating the probability of an event using the Bayes
Theorem. The formula for this is explored in more depth in the literature review section. So, it
starts by calculating the prior probability for a given number of class labels. Then, it finds the
probability for each attribute for every class. It enters these values into the Bayes formula to
calculate the posterior probability, and finally places the input point into the higher probability
class.

The GaussianNB object uses Gaussian Naive Bayes, which is useful when dealing with
continuous attribute values where the probabilities are modelled with a Gaussian distribution,
such as with the following function:

The conditional probabilities p(x) are gaussian distributed so the parameters variance and mean
are estimated using the maximum likelihood approach.

For GaussianNB, there is only one parameter of to be manipulated and tested, which is the
'var_smoothing' attribute. This denotes the portion of the largest variance for all features that are
summed with the variances for calculation stability. Therefore, this attribute is used for stability
calculation either to widen or smooth the curve, to allow for more samples that are farther
distributed from the distribution’s mean. So, for this the np.logspace statement is used to return a
sequence of numbers that are spaced evenly on the logarithmic scale, beginning from 0 till -9,
generating a total of 100 samples, np.logspace(0,-9, num=100).

Hence, based on the GridSearchCV operation, it was found that the best performing
hyperparameter was the var_smoothing value equivalent to 0.5336699.

IV. Decision Trees, DT
For the Decision Tree, (DT) model, the DecisionTreeClassifier object of the scikit-learn tree
library was utilised for its implementation. For more information, the operation and a general
background of DTs are explored in the literature review section (2.1.2).
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The DecisionTreeClassifier operates by recursively selecting the best feature or attribute that
separates the records at every stage or tree depth, designating that feature as the decision node,
which further splits the dataset into subsets. It performs this until one of the following
termination conditions are achieved, either all tuples belong to the same attribute value, there are
no remaining attributes to utilise, there are no more instances, or the maximum depth has been
reached. The decision tree uses Attribute Selection Measures (ASM), a heuristic to determine the
splitting criterion or the best attribute to split the dataset in the best possible manner. ASM ranks
the features in a dataset, and the best score attribute will be selected as the splitting first.

Therefore, this is the first hyperparameter of the scikit-learn DecisionTreeClassifier object, the
criterion parameter, which is the function to measure the quality of the split. Based on this, the
best score feature will be selected as the splitting criteria or attribute. The possible values for this
include “gini” for measure based on Gini impurity and “log_loss” and “entropy” for measures
based on the Shannon information gain. Firstly the Gini index or impurity is for the decision
trees algorithm CART (Classification and Regression Tree), where the Gini index considers a
binary split for each attribute after computing the weighted sum of impurity of each partition.
Finally, the attribute with the least Gini index is chosen as the splitting attribute first.

Whereas for the “log_loss” and “entropy” parameters, the Shannon information gain is based on
the concept of entropy that measures the randomness or impurity in an input set. So, where there
is more information gain there is a decrease in entropy. Essentially information gain calculates
the entropy value before and after a split of a dataset with an attribute value. Thus, this is useful
for ID3 decision tree algorithms. How log loss differentiates from this is it considers the log
probability of the point being in a particular class to the computation.

The second parameter being tested is the max_depth parameter which specifies the maximum
depth the tree can be expanded to. If the value is chosen to be None, the nodes of the tree will be
expanded until all the leaves are pure or possess less than the min_samples_split value.
Otherwise, any number specified here, will be the max depth to which the tree will reach in
depth. For this the values that are tested include None, 4, 5, 6, 7, 8, and 9.

Hence, based on the GridSearchCV operation, it was found that the best-performing
hyperparameters were the None max depth and entropy criterion.

V. eXtreme Gradient Boosting, XGB
For the eXtreme Gradient Boosting, (XGB) model, the XGBClassifier object of the xgboost
library was utilised for its implementation. The gradient-boosted decision tree (GBDT) machine
learning library XGBoost, which stands for "Extreme Gradient Boosting," is scalable and
distributed. It offers parallel tree boosting and is the top machine-learning library for problems
involving regression, classification, and ranking.

A Gradient Boosting Decision Trees (GBDT) is a decision tree ensemble learning algorithm for
classification and regression that is similar to random forest as it combines multiple machine
learning algorithms, in this a combination of decision trees to attain a more accurate predictive
model. What differentiates an extreme gradient boosting algorithm from an ensemble model such
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as random forests is it performs “boosting” or improves a single weak model by combining it
with other weak models to attain a stronger predictive model or to reduce or correct errors made
by existing models. Hence, models are added sequentially, until it cannot be improved any
further. The process of generating weak models is typically using the gradient descent algorithm
over an objective function.

The main goal of the development of XGBoost was to boost the performance and computational
speed of machine learning models. It is a scalable and highly accurate gradient boosting
implementation that pushes the limits of computing power for boosted tree algorithms. Trees are
constructed using XGBoost in parallel. Utilizing a level-wise approach, it assesses the quality of
splits at each potential split in the training set by scanning across gradient values and using these
partial sums.

On that note, there are 3 hyperparameters of the XGBClassifier object that can be manipulated
and studied to identify the optimal combination with the GridSearchCV.

Firstly, the “n_estimators” or number of estimators parameter, which specifies the number of
trees or rounds in the XGBoost model. We need to find the cut off point for this parameter as
increasing the number of trees beyond a certain limit, generally does not enhance the model
performance any further. For this, the values that were tested include 100, 150 and 200.

Secondly is the “max_depth” parameter, where similar to the previous models, this specifies the
maximum depth of the trees or estimators part of the ensemble, and choosing None will expand
the tree until any of the aforementioned termination conditions is reached. The values chosen for
this parameter include None, 6, and 7.

Moving on, the “subsample” parameter specifies the subsample ratio of the training where the
model implements bagging, a ML ensemble algorithm to improve stability and accuracy of the
algorithm by performing model averaging, through subsampling at every boosting iteration. The
values chosen for this parameter are calculated using np.arange(0.05, 1.01, 0.05).

Hence, based on the GridSearchCV operation, it was found that the best performing
hyperparameters were no. of estimators equivalent to 100, None max depth and 0.75 subsample.

VI. Random Forest, RF
For the Random Forest, (DT) model, the RandomForestClassifier object of the scikit-learn
ensemble library was utilised for its implementation. For more information, the operation and a
general background of RFs are explored in the literature review section (2.1.4).

A random forest is an ensemble method consisting of decision trees, generated by randomly split
dataset. The individual units are decision trees, such as the ones mentioned previously, where
they are constructed using attribute selection indicators, namely information gain, gain ratio and
Gini index for each attribute. The scikit-learn RandomForestClassifier object functions by
selecting random samples from a dataset, then building a decision tree for each sample based on
the chosen criterion or attribute selection indicator and obtaining the prediction result of each
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decision tree. After that, a vote is done for each of the obtained predicted result and based on the
prediction result, the highest score or the one with the most votes is utilised for the final
prediction or estimator. The scikit-learn RandomForestClassifier model can also be seen as a
meta estimator that uses averaging to increase predictive accuracy and reduce overfitting by
fitting a number of decision tree classifiers to different subsamples of the dataset.

On that note, there are 4 hyperparameters of the random forest object that can be manipulated
and studied to identify the optimal combination with the GridSearchCV. Firstly, as mentioned
previously for the XGBoost model, is the number of estimators or “n_esimators” parameter
which is specifies the maximum number of decision trees that are developed in a random forest
structure. For this, the values that are tested are similar to before, which are 100, 150, and 200.
Secondly, is the max_depth parameter or the maximum depth that a decision tree can reach. For
this the tested values are None, 4, 5, 6, and 7. Moving on, is the criterion attribute where as
previously explained for the decision trees model specifies the function used to measure the
quality of a split in a decision tree, and for this the tested values are gini, entropy and log_loss.
Finally, is the max_features parameter which specifies functions to calculate the number of
features to consider when finding the best split for the decision trees. For this the values that are
chosen include auto, which is the same as the second which is sqrt, that use the square root of the
total number of features. The third being log 2 which finds the log2 of the total number of
features and finally is None, which uses all the features.

Hence, based on the GridSearchCV operation, it was found that the best performing
hyperparameters were no. of estimators equivalent to 200, “None” max depth, “auto” max
features, and the “gini” criterion.

VII. ExtraTrees, EXT
For the Extremely Randomized Trees Classifier, (EXT) model, or ExtraTrees model the
ExtraTreesClassifier object of the scikit-learn ensemble library was utilised for its
implementation.

Similar to random forest, the Extremely Randomized Trees Classifier model is an ensemble
learning technique, which combines the results of multiple de-correlated individual units or
decision trees to be collected in a “forest” and to output a classification result. Its differentiating
factor from random forest is in the manner in which the decision trees of the forest are built,
where each decision tree is constructed from the original training sample than subsamples. From
there, at each test node, the trees are given random samples of k features from the list of features,
where the decision trees must choose the best features to split the dataset, based on the
previously mentioned attribute selection indicators gini, entropy, or log_loss. Therefore, there are
numerous de-correlated decision trees produced as a result of this random sample of features.

The scikit-learn ExtraTreesClassifier model can also be seen as a meta estimator that uses
averaging to increase predictive accuracy and reduce overfitting. The meta estimator fits a
number of randomized decision trees (also known as extra-trees) on different sub-samples of the
dataset.
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Similar to the random forest model, there are the same 4 hyperparameters for the
ExtraTreesClassifier object that can be manipulated and studied to identify the optimal
combination with the GridSearchCV. This includes the number of estimators, maximum features,
maximum depth, and criterion. The parameters perform the same function as previously
mentioned for the other ML models. For this implementation the number of estimators tested
were 10, 20, 50, 100, and 200, whereas max_features tested were 'auto', 'sqrt', and 'log2', while
max_depth tested were None, 4,5,6, and 7, and finally, the criterion tested were 'gini', 'entropy',
and 'log_loss'.

Hence, based on the GridSearchCV operation, it was found that the best performing
hyperparameters were no. of estimators equivalent to 200, “None” max depth, “log2” max
features, and the “gini” criterion.

VIII. K-Means Clustering, KMC
For the K-Means Clustering, (KMC) model, the KMeans object of the scikit-learn cluster library
was utilised for its implementation. For more information, the operation and a general
background of KMCs are explored in the literature review section (2.1.9).

In short, the K-Means Clustering model is an unsupervised machine-learning technique that
assigns the class for a particular point based on the points near it or the cluster it is in. Thus
because of certain similarities it has with other data points, it will be categorised into a class, and
so there is no target attribute that is utilised for training the model, instead, the model finds
patterns in the data and assigns classes based on those similarities.

So, it starts by choosing k centroids at random, where k is the number of clusters you want to
use. The centre of a cluster is represented by centroids, which are data points. The algorithm's
main component operates using a two-step procedure known as expectation-maximization. Each
data point is assigned to the closest centroid during the expectation step. The next step, known as
maximization, establishes the new centroid by computing the mean of all the points for each
cluster. After the centroids converge or follow the assignment from the previous iteration, the
sum of the squared errors (SSE) is calculated to test the quality of the cluster assignments. The
SSE is calculated as the sum of the squared Euclidean distances between each point and its
nearest centroid. Given that this is a measure of error, k-means seeks to reduce this value.
Finally, repeating the expectation-maximization step with a different set of clusters and initial
centroids until the centroid positions converge and remain unchanged.

On that note, there are 3 hyperparameters of the KMeans object that can be manipulated and
studied to identify the optimal combination with the GridSearchCV. Firstly is the number of
clusters which denote how many centroids must be produced and how many clusters must
emerge. The values tested for this are 2,3,5,10, 20, and 50. Secondly is the max_iter parameter,
which specifies the maximum iteration that the k-means algorithm can execute for a single run,
and the values tested for this include 50, 100, and 150. Finally, is the algorithm parameter which
specifies the type of k-means algorithm to use for the operation of the model.
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“lloyd” is the traditional EM-style algorithm. Utilizing the triangle inequality, the “elkan”
variation can be more effective on some datasets with clearly defined clusters. Whereas the
“auto” and “full” values are aliases of the “lloyd” parameter value. So, the values tested for this
include “lloyd”, “elkan”, “auto” and “full”.

Hence, based on the GridSearchCV operation, it was found that the best performing
hyperparameters were no. of clusters equivalent to 200, 150 maximum iterations, and the “lloyd”
algorithm.

Nevertheless, based on understanding its structure and workflow, it is clear that the KMC model
is found to not be optimal for this problem domain, as it is an unsupervised ML classifier. This is
further supported by its evaluation metric scores which are very underwhelming and far lower
than the other classifiers. This is because it does not utilise the additional information that is
available in the form of the target values as with supervised models. So, it only performs
classification based on patterns it finds from the dataset.

IX. Logistic Regression, LR
For the Logistic Regression, (LR) model, the LogisticRegression object of the scikit-learn
linear_model library was utilised for its implementation. For more information, the operation and
a general background of LRs are explored in the literature review section (2.1.1).

The scikit-learn logistic regression object is a simple classification algorithm that classifies rows
into two or more classes depending on the number of classes the target values adhere to.
Therefore, there are two types of logistic regression binary classification when there is only 2
possible outcomes and multi-class classification when there are more than 2 possible outcomes.
Therefore, looking at our dataset, the latter explains it more accurately as the dataset has a
multivalued target attribute.

The LogisticRegression object estimates the likelihood of an outcome, and the result will range
from 0 to 1 (true or false). Probabilities that are less than 0.5 are classified as false in binary class
classification, while probabilities that are more than 0.5 are classified as true. The natural log and
sigmoid functions are thought to keep the output values at 0 or 1, respectively, by the algorithm.
Hence, fitting the data to an S-shaped line is the goal of logistic regression.

Additionally, in logistic regression, the dependent variables or target attributes adhere to the
Bernoulli distribution where just two possible results in the discrete probability distribution
known as the Bernoulli distribution are possible.

On that note, there are 2 hyperparameters of the KMeans object that can be manipulated and
studied to identify the optimal combination with the GridSearchCV. Firstly, is the regularisation
value, C, which as previously described in the SVC section, stands for the penalty parameter,
which stands for the misclassification or error term that denote the acceptable error rate for a
particular estimator. The values tested for this are 1.0, 10.0, 100.0, and 1000.0. Additionally, the
solver parameter is specifies the function or algorithm used for the optimisation of the logistic
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regression model. For this, the values tested are “newton-cg”, “lbfgs”, “liblinear”, “sag”, and
“saga”.

X. Artificial Neural Network, ANN or Multilayer Perceptron, MLP
For the Artificial Neural Network (ANN) or Multilayer Perceptron (MLP) model, the
MLPClassifier object of the scikit-learn neural_network library was utilised for its
implementation. For more information, the operation and a general background of ANNs are
explored in the literature review section (2.1.7).

The MLPClassifier object of scikit-learn follows a feedforward neural network structure
consisting of three layers, the input, output and hidden layer and consists of interconnected nodes
within the layers. So an MLP joins multiple layers in a directed graph, where there is only one
possible signal path through each node. Except for the input nodes, every node has a nonlinear
activation function.

For starters, the input layer receives data, which is then subjected to abstraction in the hidden
layer. Finally, the output layer distributes the predictions, classifications or outputs. Similar to a
typical unit of perceptron, all input layers are subjected to an activation function and initial
weights in a weighted sum. These weights are akin to the coefficients used in a regression
equation. An activation function or transfer function is a straightforward mapping of the neuron's
output to its summed weighted input. Because it controls the threshold at which the neuron is
activated and the intensity of the output signal, it is known as an activation function.

However, an MLP sets itself apart by using the supervised learning method of backpropagation,
as the supervised learning technique for training the network. Backpropagation allows the neural
network to iteratively modify its network weights to reduce its cost function. Owing to their
being multiple layers in an MLP, it is considered a deep learning method. The hierarchical or
multi-layered structure of neural networks is what gives them their predictive ability.

The MLPClassifier object of the scikit-learn library allows for the easy manipulation of key
parameters or hyperparameters to see its effect on the resultant model’s performance and
evaluation metric results. Therefore, the following are the parameters of the MLPClassifier
object that are tested along with the corresponding values that are tested:

1. Activation function: identity(‘identity’), logistic sigmoid (‘logistic’), hyperbolic tan
function (‘tanh’), and rectified linear unit (‘relu’). This parameter specifies the activation
function at every neuron of the hidden layer. For this, the “identity” value is a no-op
activation technique which is effective for implementing linear bottle-neck by returning a
linear function based on f(x) = x. Whereas the “logistic” value utilises a logistic sigmoid
function, based on a function that returns f(x) =1/(1+exp(-x)). Moving on, the “tanh”
value is a hyperbolic tan function that, as the name suggests, returns based on the
function f(x) = tanh(x). Finally, the “relu” value specifies a rectified linear unit function
that returns based on the function f(x) = max(0, x).

2. Solver: Limited-memory BFGS (‘lbfgs’), stochastic gradient descent (‘sgd’), and
stochastic gradient-based optimizer (‘adam’). As in the previous model, this solver
parameter specifies the weight optimisation solver across the noted, where “adam” works
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effectively in terms of training time and validation score, especially on relatively large
datasets. Whereas for smaller datasets, “lbfgs” performs slightly better as it converges
more rapidly.

3. Hidden Layer Size (hidden_layer_sizes): 1 to 30 neurons per layer until 3 layers. So, (1)
to (30,30,30). Meaning that at every run a new neuron is added to the current layer up
until 30 neurons in that layer, and then the next layer will be created starting from 1 until
30 and so on, until 3 layers are filled with 30 neurons each. This parameter essentially
describes the number of layers and neurons in that layer for the MLPClassifier object. It
is a tuple datatype where every element of the tuple specifies the number of neurons in
that layer and the index of the element and the length of the tuple denote the number of
hidden layers in the MLPClassifier.

4. Maximum Iterations (max_iteration). 1 to 1000 maximum training iterations are tested.
This parameter denotes the number of epochs or the maximum number of training
iterations to perform and the data points will be used till the final NN model is obtained
and evaluated. Therefore, typically the solver iterates until convergence is reached or
there is no more increase in the performance or evaluation metrics, otherwise it will stop
at this specified number of iterations. This value is important to be discovered to identify
the optimal number of iterations, where performing more iterations will not improve the
model’s performance and will only increase its complexity or time taken to train the
model. So, an optimal value will maximise the model’s performance in an acceptable
training timeframe and minimal model complexity.

There are more outside available values for the activation function and weight optimisation
solver in the real-world that can optimise the NN models, however, for simplicity of testing, only
the available values for these parameters or ones provided by default by the MLPClassifier
object are studied and tested.

Additionally, apart from using the scikit-learn library’s object, MLPClassifier, the Keras library
was also utilised to construct a multi-layer perceptron. For this, the Sequential model is created,
acting as a stack of layers where hidden layers will be added to it, before compiling it with the
Adam compiler. This compile is utilised to compile the model as it is able to perform stochastic
gradient descent, an optimisation technique used in ML and DL, minimising the cost function or
the error between the actual output and predicted output, resulting in better predicted output that
is closer to the value of actual output. After that, the designed NN model is then trained with the
training data, using the fit() function and to test its prediction accuracy with the testing data,
using the predict() function. However, this method of developing an MLP classifier was
abandoned in preference to scikit-learn’s MLPClassifier object. The reason for this was, from our
experience it was found that the Sequential model of the Keras library required more time to be
trained or fitted with the dataset as compared to scikit-learn’s MLPClassifier. Thus, this can
accumulate, as we want to test the effect of different hyperparameters, especially the different
activation functions, solvers, hidden layer structures and sizes and the maximum epochs.
Additionally, as mentioned earlier, the MLPClassifier allows for easy manipulation of these
parameter values. Thus, it was chosen as the final mode for building and testing ANNs or MLPs.

For testing the hyperparameters of this MLPClassifier object a different approach is taken
compared to the other machine learning models, as GridSearchCV is not used. Instead, three
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different tests are designed using for loops to determine the optimal values for the
aforementioned hyperparameters that result in a model that performs the best. This has a similar
effect as the grid search method of hyperparameter optimisation, as these for-loop based tests
exhaustively assess every combination of the parameter values to determine the best-performing
hyperparameters. Then, finally, after the hyperparameter values have been identified, they will be
used as the parameter values when constructing the final MLPClassifier object, which will be
fitted with the dataset, used to make predictions and tested to be evaluated and compared with
the other ML models that have been tested thus far.

That being said, the tests include the first test is for finding the combination of activation
function and solver, whereas the second is for finding the optimal number of layers and neurons,
and the third is for finding the maximum iterations.

Test 1: Activation Function and Solver
For the first test, firstly, the parameters list for the activation function and solvers are initialised
to specify the values for these parameters. Then, the default values for the maximum iterations
and hidden layer size are initialised to 1000 and (32, 16) respectively. Therefore, as there are 4
activations and 3 solvers, there will be a total of 12 combinations to test with the MLP having 2
layers with 32 neurons in the first layer, 16 in the second, and it will be trained for a maximum
iteration of 1000. This ensures that every combination reaches a convergence to a solution.
During every test run, the nn_pipeline user-defined method is called, which essentially is a quick
way to initiate the construction of the MLPClassifier object along with the parameter values for
that particular test run, and to call the aforementioned modelValidation function to evaluate it.
After every test run, some key information regarding the test run is stored in an array, namely the
activation and solver used, and their accuracy, precision and f1 scores. This array is sorted in
descending order of those evaluation metric scores, and then stored in a Pandas DataFrame to
visualise the parameters and their corresponding performance and evaluation metric results
easily, which is then printed.

The following is the visualisation of the Pandas DataFrame to identify the best performing
number of hidden layers and neurons combination and their corresponding performance and
evaluation metric results.
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Figure 16: Visualisation of the evaluation metric results from the testing of different activation
function and solver combination with the MLPClassifier.

From here, it is found that the “tanh” activation function and “adam” solver combination
performed the best, returning an accuracy result of 0.790754, an f1-score of 0.790754, and
precision score of 0.790754. Thus it is the combination chosen for the subsequent tests and the
final MLPClassifier object that is created, as it is the most stable and best-performing activation
function and solver combination in the parameter list, outperforming every other combination.

Test 2: Number of Hidden Layers and Neurons
For the second test, first, the default values for the activation function and solver are initiated,
using the best-performing hyperparameter values found from the previous test, which are the
“tanh” activation function and “adam” solver. After that, the maximum iteration is initialised to
1000, as mentioned before to allow for the models to converge to a solution. Then the maximum
number of hidden layers and neurons are instantiated to 3 and 30 respectively so that
MLPClassifier objects with a hidden layer size of (1) to (30, 30, 30), will be created and tested.
This maximum number of neurons per layer was kept the same to provide consistency and to
simplify the test as well as for lower computational time, as testing a different number of neurons
for every layer would lead to more complexity in the test sequence.

Hence, with this method, in total there will be 90 total test runs. So, a nested for loop is used for
the first looping through the max number of hidden layers and the child for loop for looping
through the maximum number of neurons to achieve this sequence. Similar to the previous test,
the nn_pipeline method is called at every test run to make it easier to initialise the MLPClassifier
with the parameters based on what is passed in that test run. The parameters along with their
evaluation metric scores are stored in an array and sorted in descending order of their evaluation
metric scores (accuracy, f1-score and precision). After that, the array is stored in a Pandas
DataFrame to visualise the parameters and their corresponding performance and evaluation
metric results easily, which is then printed. Along with that, at every layer iteration, the
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evaluation metrics for the number of neurons for that number of hidden layers is stored to be
visualised using the Matplotlib method plot. This is to visualise the effect of increasing the
number of neurons at every hidden layer stage on the performance of the model. So, the
following are the line graph plots at the end of each hidden layer for loop.

Figure 17: Accuracy score for MLPClassifier model with 1 hidden layer and different number of
neurons.

Figure 18: Accuracy score for MLPClassifier model with 2 hidden layers and different number
of neurons.
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Figure 19: Accuracy score for MLPClassifier model with 3 hidden layers and different number
of neurons.

From the diagrams above it is observed that at every hidden layer, increasing the number of
neurons improves the accuracy of the model until it stabilises as it approaches values exceeding
25. This demonstrates that an increase in the number of neurons enhances the MLP’s
performance. When the number of hidden layers increases, the accuracy values stabilises at an
earlier number of neurons. The two hidden layers, 1, and 2, exhibit the greatest fluctuations and
potentially volatile behavior, thus 3 hidden layers are preferable for the final chosen hidden layer
combination.

The following is the visualisation of the Pandas DataFrame to identify the best performing
number of hidden layers and neurons combination and their corresponding performance and
evaluation metric results.

Figure 20: Visualisation of the evaluation metric results from the testing of different hidden layer
combinations with the MLPClassifier

From here, it is found that the (27, 27, 27) hidden layer combination performed the best,
returning an accuracy result of 0.812652, an f1-score of 0.812652, and precision score of
0.812652, training time of 2.421825s, testing time of 0.001957s and a total time of 2.423782s.
Thus it is the combination chosen for the subsequent tests and the final MLPClassifier object that
is created, as it is the most stable and best-performing hidden layer combination in the parameter
list, outperforming every other combination.
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Test 3: Maximum Number of Iterations (Epochs)
For the third test, first, the default values for the activation function, solver, and hidden layer
sizes are initiated, using the best-performing hyperparameter values found from the previous test,
which are the “tanh” activation function, “adam” solver, and (27, 27, 27) hidden layer size. After
that, the maximum number of iterations is instantiated to 1000 to test the maximum epochs or
training runs from 1 to 1000. Hence, with this method, in total there will be 1000 total test runs.

So, a for loop is used for looping through the max number of iterations so at every loop the
nn_pipeline is called and used to create the MLPClassifier object with the current max_iteration
parameter.

The parameters along with their evaluation metric scores are stored in an array and sorted in
descending order of their evaluation metric scores (accuracy, f1-score and precision). After that,
the array is stored in a Pandas DataFrame to visualise the parameters and their corresponding
performance and evaluation metric results easily, which is then printed.

Additionally, a graph is plotted showcasing the effect of increasing the maximum iteration on the
accuracy of the MLPClassifier model, as seen below.
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Figure 21: Accuracy score for MLPClassifier model with maximum iterations from 1-1000.

From the figure above, it can be seen that increasing the maximum number of iterations increases
the accuracy of the NN model, up until a certain value to which the accuracy score flattens or
stabilises. This is because the NN model is converging and does not increase significantly past an
accuracy value of 0.815, as it has obtained sufficient time to train completely. Therefore,
increasing the number of maximum iterations will only increase the complexity of the NN model
as more time is taken to train the model and so the smallest value that maximises the accuracy
score is obtained.

For this, the following is the visualisation of the Pandas DataFrame to identify the
best-performing number of maximum number of iterations and their corresponding performance
and evaluation metric results.
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Figure 22: Visualisation of the evaluation metric results from the testing of different number of
maximum iterations with the MLPClassifier.

From here, it is found that the 723 maximum number of iterations performed the best, returning
an accuracy result of 0.815085, an f1-score of 0.815085, and precision score of 0.815085,
training time of 2.204982s, testing time of 0.0012781s and total time of 2.217763s. Thus it is the
value chosen for the final MLPClassifier object that is created, as it is the most stable and
best-performing maximum iteration value in the parameter list, outperforming every other
parameter value.

Final MLPClassifier() Object
Conclusively, after obtaining all the optimal values for the aforementioned hyperparameters, it is
utilised to build and configure the scikit-learn MLPClassifier() object that will be used to
compare with the other ML models that have been designed and developed so far. Therefore, as
per the results obtained the applied hyperparameters are the following:

1. Activation function: tanh
2. Solver: adam
3. Hidden Layer Size (hidden_layer_sizes): (27, 27, 27)
4. Maximum Iterations (max_iteration): 723

XI. StackingClassifier
For the hybrid model, the StackingClassifier object of the scikit-learn neural_network library
was utilised for its implementation.

The scikit-learn StackingClassifier object is an ensemble model, seen as a stack of estimators
with a final classifier or estimator that is designated. It employs a meta-learning algorithm to
discover the most effective way to combine the predictions from two or more base
machine-learning algorithms. So, it uses the ML technique of stacking, by combining the output
of individual base estimators and the final classifier for computing the final prediction. Thus,
combining individual models into a singular powerful mode. Hence, through stacking it
leverages the strength of each of the individual classifiers that make up the hybrid model, and
uses their collective outputs as the input for the final specified estimator. The final specified
estimator is trained through cross-validation and will combine these base estimators.

Using a cross-validation technique, such as k-fold cross-validation, the individual models are
trained on various subsets of the data, and the predictions from each model are then combined to
produce the final prediction. A meta-classifier is used to combine the predictions made by the
various models after they have each been trained on different subsets of the data. Since the
various models can learn complementary information, this method frequently results in improved
performance. Overfitting can be minimized through stacking as you are training each classifier
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on a different subset of the data. Due to its ability to lower prediction variance, stacking is also
helpful for handling unbalanced datasets.

However, for a base model, considering it has a lower level of complexity and is easier to be
described, trained, and maintained than a stacking ensemble, if it is found to outperform the
stacking ensemble, the base model should be used in preference.

In this model, the only parameter that was manipulated was the final_estimator parameter. So,
for the implementation, first the list of the estimators were initialised with the previously
trained/fitted model and their name. For this, only the estimators that have acceptable evaluation
metric results were considered, this mainly consists of models that had an accuracy rate of more
than 0.7. So, the models that were used to construct the StackingClassifier were SVC, KNN, DT,
XGB, RF, EXT, and ANN.

Then, using a for loop, the models in this list are iterated over, and at each iteration, the
StackingClassifier object is instantiated with the estimators list and a different final estimator is
chosen at every iteration of the for loop. After that, the StackingClassifier model is evaluated and
its results are appended to the compare_models array to be compared with the rest of the ML
models that have been designed and developed.

3.4.6 Model Validation/Evaluation Metrics
The next stage of the ML implementation is to evaluate the performance of the designed and
built models to allow an efficient comparison between the ML models to determine the
best-performing model. Thus, a thorough and versatile evaluation is necessary to develop a
model that is robust to different kinds of records. By using different metrics we can see
limitations in the model, and attempt adjustments to improve the model’s overall predictive
power before the model is utilised for unseen data the end-user might input.

Thus, evaluation metrics have to be defined and set to be used to measure the performance
models. Considering this problem domain is a classification which is a supervised learning
model where the target attribute is a nominal binary attribute, the evaluation metrics are chosen
accordingly.

In the program, this stage is performed after every model has been fitted with the dataset and is
used for prediction to validate the predictions and assess the performance of the models. So, the
modelValidation() function, a user-defined function is called, which contains all the commands
or statements to call the appropriate metrics calculation methods or libraries.

Accuracy
In the previous stage, from fitting the ML models to the dataset and utilising the testing and
training set to make predictions, we will obtain the accuracy estimation values of each of the
models. Accuracy measures how often the classification algorithm correctly predicts or the
proportion of total dataset records that were correctly classified out of the total instances. Hence,
it represents the percentage of accurate results.

Accuracy = Number of Correct Predictions/Number of All Predictions
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Following the confusion matrix, accuracy can be calculated using the following equation, where
TP is True Positive, FP is False Positive, TN is True Negative, and FN is False Negative.

Accuracy = (TP+TN)/(TP+TN+FP+FN)

It is implemented or computed in the program using the Scikit-Learn library’s metrics package’s
accuracy_score function (sklearn.metrics.accuracy_score) found in the modelValidation
function().

Confusion Matrix
The confusion matrix is a classification report in the form of a 2x2 matrix generated by various
classifiers to relay information regarding the classifications and errors found to give insight and
help in determining the effectiveness of the proposed methodology. Hence, the confusion matrix
displays the number of True Positives (TP), False Positives (FP), True Negatives (TN), and False
Negatives (FN) in the classification. The following diagram displays a general confusion matrix,
the information it represents and how these values (TP, FP, FN, TN) are determined:

Figure 23: Confusion Matrix

There are a number of data that is utilised in the confusion matrix:
● Condition Negative (N): The number of negative cases in the data, or in this case when

the target value is 0 (absence of HD)
● Condition Positive (P): The number of positive cases in the data, or in this case when the

target value is 1 (presence of HD)
● True Positive (TP): The number of correct positive condition classifications/predictions
● True Negative (TN): The number of correct negative condition classifications/predictions
● False Positive (FP): The number of incorrect positive condition classifications/predictions

(Type I Error)
● False Negative (FN): The number of incorrect negative condition

classifications/predictions (Type II Error)
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The confusion matrix was implemented in the programme using the Scikit-Learn library’s
metrics package’s confusion_matrix function (sklearn.metrics.confusion_matrix). Based on the
confusion matrix values, we can deduce the precision, recall, and f1-score or f-measure values of
the classification. These evaluation metrics can also be generated using the Scikit-Learn library’s
metrics package’s classification_report function (sklearn.metrics.classification_report). The latter
was the chosen method in the program as seen in the modelValidation function.

Precision
Precision represents the proportion of positively predicted records when the sum of records that
are predicted is true or turned out to be true for the true positive rate whereas for the true
negative rate is the proportion of negatively predicted records when the sum of records that are
predicted is negative or turned out to be false. Hence, It is typically useful for ensuring the
program is precise and gives correct results, classifications or predictions. It can be calculated
using the following equations:

True Positive Rate (Precision Positive) = TP/(TP+FP)
True Negative Rate (Precision Negative) = TN/(TN+FN)

It is implemented or computed in the program using the Scikit-Learn library’s metrics package’s
precision_score function (sklearn.metrics.precision_score) found in the modelValidation
function().

Recall
Recall represents the proportion of the positively predicted records when the instance is actually
positive for sensitivity, conversely, for specificity it represents the proportion of negatively
predicted records when the instance is actually negative. So, it evaluates the returned relevant
values. It is typically useful for measuring the occurrence of when the false negative is of higher
concern than the false positive. It can be calculated using the following equations:

Sensitivity (Recall Negative) = TP/(TN+FN)
Specificity (Recall Positive) = TN/(TN+FP)

It is implemented or computed in the program using the Scikit-Learn library’s metrics package’s
precision_score function (sklearn.metrics.recall_score) found in the modelValidation function().

Misclassification Rate
This is the direct opposite of the accuracy metric, which measures the errors of the classification
model. In other words, it measures how often the classification algorithm incorrectly predicts or
the proportion of total dataset records that were incorrectly classified out of the total instances.
Hence, it represents the percentage of inaccurate results:

Misclassification Rate = (FP + FN)/(TP+TN+FP+FN)

It is implemented or computed in the program using the Scikit-Learn library’s metrics package’s
accuracy_score function (sklearn.metrics.accuracy_score) found in the modelValidation
function() and subtracting it from 1.
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F-Measure/F1-Score
The f1-score or f-measure utilises both the precision and recall values to evaluate the harmonic
mean of value of precision and recall, also known as the weighted average of reciprocals. It is at
its maximum when the precision and recall values are equivalent. Essentially, it is a useful metric
when the FP and FN are equally significant, the addition of data does not change the model’s
output, or the TN value is substantial. Hence it can be evaluated using the following equation:

F1 = 2 * (precision * recall) / (precision + recall)

It is implemented or computed in the program using the Scikit-Learn library’s metrics package’s
f1_score function (sklearn.metrics.f1_score) found in the modelValidation function().

Mean Square Error (MSE) and Root Mean Square Error (RMSE)
The mean squared error calculates the sum of all squared errors. This translates to a return of the
average of the square sums of each difference between the estimated value and the true value. A
larger MSE is a sign that the linear regression model did not successfully predict the model, and
vice versa. It serves as a reliable gauge of how well a model fits your data. The following is the
formula in which MSE is calculated:

The MSE's sensitivity to outliers is a crucial point to keep in mind. This is due to the fact that it
computes the average error of each data point. As a result, an increased error on outliers will
increase the MSE.

The square root of a value obtained using the Mean Square Error function is the root mean
square error. It is a quadratic scoring formula that also calculates the average error's magnitude
and is proportional to the MSE, so it also reflects the amount of error in the predictions. It is
calculated by taking the square root of the averaging squared observations' differences from
predictions.

It is implemented or computed in the program using the Scikit-Learn library’s metrics package’s
mean_squared_error function (sklearn.metrics.mean_squared_error) found in the
modelValidation function().

Mean Absolute Error (MAE)
The average differences between expected and observed values are measured by the mean
absolute error. It calculates the exact difference between the predicted value and the observed
value and then calculates the average by adding up all of these values.

The mean absolute error (MAE), as opposed to the mean squared error (MSE), calculates the
error on the same scale as the data. It is therefore simpler to understand and the MAE is less
prone to outliers and does not square the differences.

83



The following is the formula in which MSE is calculated, where n is the number of errors, Σ the
summation symbol, and |xi – x| denotes the absolute errors:

It is implemented or computed in the program using the Scikit-Learn library’s metrics package’s
mean_absolute_error function (sklearn.metrics.mean_absolute_error) found in the
modelValidation function().

Matthews Correlation Coefficient (MCC)
In machine learning, the Matthews correlation coefficient is used to evaluate the accuracy of
binary and multiclass classifications. It considers both true and false positives and negatives, is
generally regarded as a balanced measure that can be applied even when the classes have very
different sizes, and incorporates both. In its most basic form, the MCC represents a correlation
coefficient value between -1 and +1. Inverse predictions are represented by a coefficient of -1,
while perfect predictions are represented by a coefficient of +1. This measure or statistic is also
called the phi coefficient.

The following is the formula in which MCC is calculated:

It is implemented or computed in the program using the Scikit-Learn library’s metrics package’s
matthews_corrcoef function (sklearn.metrics.matthews_corrcoef) found in the modelValidation
function().

Training and Testing Time
The testing time is another evaluation metric to determine the time complexity of the ML model.
If the model requires a significant amount of time to process the inputs to return an output or
provide a classification, this might indicate the program has high complexity and is not suitable
for real-world and real-time usage.

If the model performance is not ideal, adjustments can be made to improve the model
performance or complexity and to reduce bias. This can be performed through applying the
different but appropriate data preparation techniques, whether it is detecting highly correlated
features in the dataset, transformation for attributes with high data sparsity or outliers, or
imputation of missing values.
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That being said, in this department, it is crucial to optimise on the testing time to allow for the
form or model inputs to be processed and for a suitable result, prediction or classification to be
returned. The training time is also measured, which indicates the complexity of the model, where
a longer time to train the model or fit with a dataset indicates that it is of higher complexity. This
training operation is not done repeatedly as the ML model is only trained and fitted once. In fact,
when the model is deployed into the web app, the chosen best ML model is already fitted with
the dataset and then is serialised and pickled, so it is easily loaded and can be used to process the
inputs to return a classification rapidly. Similarly, the total time is computed and returned, in the
same way only to convey information regarding the model’s complexity.

Thus, the testing time is the only crucial metric that has an impact on the real-world usage of the
ML model. Even this is improved on, thanks to the operation of pickling the ML model.

It is implemented or computed in the program using the time packages time function (time.time)
found in the modelValidation function(). Thus, this is applied in the code for an ML model,
before and after the fit() function call to measure the training time, and then before and after the
predict() function call to measure the testing time. The sum of the training and testing time
returns the total time score.

Conclusively, the actual evaluation metric results of the individual ML models will be presented
and explored in more depth in the Results and Discussion section.

3.4.7 Model Selection
After the results have been obtained, model selection is performed, which is the process of
selecting one among the possible candidate models for the predictive modelling problem, in this
case, for the HD prediction/classification model. The existence of competing concerns aside
from the model performance, including complexity, maintainability and available resources,
necessitates that a standard model selection method should be adopted.

For this implementation, we will follow the concept or principle of parsimony or Occam’s razor
where the most simple model is chosen. Therefore, each model is fitted with the dataset, and we
select the best model at every level when comparing the accuracy or evaluation metric results
with the chosen models. Then, in the event, there are two or more models having the similar best
accuracy or performance, the model that is more simple and possesses less complexity will be
selected to be integrated with our web app system [15].

So, the performance of the prospective model will be the most important criteria, but the
complexity of the program will be kept in consideration, to ensure that the training time is not
too extensive and to ensure that it is practical for real-world scenarios. As mentioned previously,
in order for the ML model to be applicable or practical, the testing time for the ML model should
be optimised or minimised so that the form or model inputs are processed more rapidly and an
accurate output is returned quickly. Also, this will ensure the maintainability of the program is
optimal for future maintenance and deployment tasks as well as requiring lesser hardware
resources to run smoothly.
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In the program implementation, this step is done manually, with the help of the compare_models
array that stores all the tested ML models and their evaluation metric results. This array is
converted into a Pandas DataFrame, and then displayed in the terminal and outputted in an excel
file (.xslx) to allow easy analysis of the results and models.

Therefore, from this step, the best-performing model was found to be the StackingClassifier
model with the Random Forest model as the final estimator. The evaluation metric results of this
model and why it was chosen as the ideal model will be explored in more depth in the Results
and Discussion section. Therefore the following are steps to perform after the best-performing
model had been chosen which includes saving, pickling or serialising it to be used with the web
app and viewing the feature importance of the model. This can be seen in the program under the
StackingClassifier model creation section, as a separate if statement, so that it only executes for
the StackingClassifier object that utilises the Random Forest as the final estimator.

Saving the ML Model With Pickle
After selecting the model, in order to load this ML model into Django and the web app, the
model is “pickled”.

Pickle is a helpful Python tool that lets you share, commit, and re-load pre-trained machine
learning models. It also helps you save your ML models and reduce time-consuming retraining.
The majority of machine learning (ML) data scientists will use Pickle or Joblib to store their ML
models for later use. Pickle is a universal object serialization module that supports both object
serialization and object deserialization. Thus, in this case, it is used to serialize the ML objects,
to be reused in the web app.

For this, the dump() function of the joblib package is utilised to serialize the object and convert it
into a “byte stream” which is in turn saved as a file with the name “heart-strat.pkl”.

Viewing the Feature Importance of the ML Model
Following that, the feature importance of the chosen best-performing ML model is identified and
visualised. The feature (variable) importance identifies the contribution of each feature to the
model prediction. In essence, it establishes the extent to which a particular variable is useful for a
given model and prediction. We use a score to quantify the significance of a feature; the higher
the score, the more significant the feature. Possessing a feature importance score has numerous
advantages.

a) Model Improvement
For example, the relationship between independent variables (features) and dependent variables
(targets) can be established. We could identify and eliminate irrelevant features by looking at
variable importance scores. The model may run faster or even perform better if the number of
meaningless variables is decreased.

b) Model Understanding and Interpretability
Additionally, feature importance is frequently used as a tool to improve the interpretability of
ML models. It is possible to deduce from the scores why the ML model makes particular
predictions as well as how its predictions can be altered by changing the features. Similar to a
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correlation matrix, feature importance makes it possible to comprehend the connection between
the features and the desired outcome. Additionally, it enables you to comprehend which features
are unnecessary for the model. Hence, other stakeholders can understand and understand your
model better if you use feature importance. Moreover, you can figure out which features
contribute most to the accuracy of your model's predictions by assigning scores to each feature.

Implementation of Feature Importance
For the implementation of this, first, the column headers are initialised, this is following the
features that have been selected of the dataset and the Pandas method get_dummies has been
applied to it, to obtain the hot-encoded counterparts for the categorical/object attributes. After
that, using the model.feature_importances_ attribute, we can identify these individual importance
scores to be matched with the aforementioned headers to be converted into a Pandas DataFrame,
and then sorted in descending order to view the most influential features. This DataFrame was
then plotted to visualise the feature importance better. The results of these feature importance
will be explained in more detail in the Results and Discussion section.

3.5 Requirements Plan for Web Application
Introduction
The process of requirements engineering or the requirements planning stage involves several
stages to ensure that the web app component of the system is designed and implemented to fulfil
its required functionalities. Typically, these generic processes are similar for most software
development projects even for this heart disease prediction/classification system, which includes,
requirements elicitation, analysis, validation, and management. However, although similar, the
implementation of these requirements stages differ depending on the application domain or
objectives, the stakeholders involved and the developers in charge of fulfilling the requirements.

Therefore, the following requirements plan, goes over how these stages were conducted and the
outcome of each stage for the development of this heart disease prediction/classification system.
With thorough planning and research, it ensures the final software requirements specification
(SRS) or system functionality document comprehensively highlights all the necessary functional
and non-functional requirements the software should fulfil. Simultaneously, reducing the chances
of neglecting any critical system functionalities and ensuring the implementation stage proceeds
smoothly with menial backtracking.

3.5.1 Requirements Elicitation
This first stage is intended to identify the methods in which we discover or elicit requirements
that the web component of the heart disease prediction/classification system should fulfil.

Stakeholders
The initial part of the requirements elicitation stage is determining the stakeholders of the project
and system. The stakeholders refer to everyone who’s involved or interacts with the heart disease
prediction/classification system, in this case, stakeholders include end-users (patients and
doctors), system administrators, engineers/developers performing maintenance. Therefore, it’s
crucial to ensure that the proposed requirements and functionalities cater to these stakeholders,
since they’ll be using the final system. So, they serve as a source of requirements as well.
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Based on this we can identify some common characteristics of the stakeholders and end-users.
For instance, the age of the audience or site visitors will be of an adult’s age which regularly has
access or uses computer or web-based systems (approximately 35-75). So, this will help us
determine the design choices for the web platform, in terms of colour scheme, where a
professional and minimal option will be chosen that is not too striking or alarming and for font
size and style a legible and clear option will be ideal. We should refrain from adding too much
cluttering of texts on the pages of the website and ensure that all the fields of the heart disease
predictor form also provide legible and helpful information to assist the site visitor in entering
details.

Methods of Requirement Discovery, Elicitation or Collection
At this stage we identify the sources or specific methods of obtaining the requirements of the
web app for the heart disease prediction/classification system. The following section will explain
how these requirements discovery methods were implemented or conducted.

Therefore, altogether there are two main methods employed to identify these requirements,
which include reviewing similar heart disease risk calculator websites and from reviewing
journal articles related to heart disease risk predictions:

1. Ethnography or Reviewing Similar Heart Disease Risk Calculator Web Platforms
Ethnography in requirements engineering is the qualitative study or analysis of how users
interact with a system. In this case, we can review similar heart disease risk calculator web
systems from a users’ point of view. This allows us to gain a deep understanding of how the
overall system domain and its functionalities should work. Therefore, this method of
requirements elicitation, is beneficial for understanding existing processes in other heart disease
prediction/classification systems.

These alternative heart disease risk calculator websites have a similar target demographic and
stakeholders as mine. So, we can gain inspiration from these platforms to generate a list of
requirements our desired web platform should also fulfil. This makes the site reputable as it fits
into the market of heart disease prediction websites and can perform similar functionalities. Plus,
as it has common components, such as the heart disease prediction form, labels and input fields,
results page, this improves the platform's user-friendliness since they’re already familiar with the
other platforms. Thus, the learning curve is lower.

Therefore, I can identify the implementation of different functionalities and features that are
integral to their website and for end user interaction. These key functionalities I analysed were:

● Website and page’s design and layout
● Form layout and guiding users to entering field inputs

I made a list of these websites analysed and gathered their key info to a note-taking app, Google
Keep. This makes referring back far easier. Thus, the heart disease risk calculator websites I
analysed includes:

● UpToDate.com’s Calculator: Cardiovascular risk assessment [45]
● MayoClinicHealthSystem.org’s Heart Disease Risk Calculator [46]
● Reynolds Risk Score [47]
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● Medical College of Wisconsin’s Coronary Heart Disease Risk Calculator [48]

Results and Analysis
From analysing these website, the following are some key information worth noting when
developing our prospective system:

● All of the sites house the HD prediction risk calculator form within the home page of the
HD Risk Calculator section or they do not have to be redirected to the appropriate page.
So, this can improve the usability and intuitivity of the website where the main
component, the risk calculator form where users can enter their data, is ready to be
accessed from the front page.

● The layout of the forms are similar across all the websites, where it begins with providing
a brief introduction, instructions, disclaimers to using the system, before showing the
field names and the input fields where users can enter their data (general and
physiological).

● Some websites such as the Reynolds Risk Score, provide an FAQ section and an
on-hover description to explain the question and assist or guide users in entering their
data in the form.

2. Reviewing Similar Heart Disease Prediction and Classification-Related Literature
As seen from the literature review section (2.0), several journal articles were reviewed in depth.
Therefore, through this review, we developed a better understanding of the problem domain
(heart disease prediction/classification), the goals/aims of the authors’ projects and study, the
datasets used, and the features correlating with HDs and CVDs occurrence. We performed a brief
review to understand what are CVDs or HDs, the medical implications it entails, types of
problems, contributing factors, preventative measures and electrocardiography (a key measure of
the likelihood of patients developing HD). This would aid us in better understanding the problem
domain, and to ensure the ML models developed will take the context into consideration to
ensure effective and optimal results and diagnosis.

Along with that, from these journal articles, we determined how the authors conducted their ML
implementation for finding the optimal solution that provides the best prediction accuracy for
this problem domain, including the method chosen to preprocess the data, partition the data,
feature selection, hyperparameter tuning, ML classification algorithms used to develop their
model (KNN, logistic regression, etc.), evaluation methods and metrics used. We also performed
an in-depth review into the prospective individual ML algorithms to understand their
functioning, the required parameter values and how they can be applied for our problem domain.

Overall, through reviewing these journal articles, we have a better understanding of the general
steps involved and key considerations for the ML implementation of the system. Section 2.0 of
this planning document provides a more in-depth look at the results of the literature review
conducted and section 2.4 summarises the literature review section.

3.5.2 System Functionality or Software Requirement Specification (SRS)
After gathering and analysing the data from the requirements elicitation stage, we categorised
and organised the requirements collected in order of priority. After that, we arrive at the
requirements specification stage, which is essentially the process of writing down the functional
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and non-functional requirements of the heart disease prediction system in a comprehensive
requirements document, known as the Software Requirement Specification (SRS).

Functional Requirements
These are system requirements for the prospective web app component of the heart disease
prediction/classification system. So, it entails the functionalities and services that the system
provides. This involves high-level description of functionalities of the system.

With that said, the following are functional requirements identified that this system should fulfil:
1. Users shall be able to enter their information (general information and physiological data)

into the heart disease predictor/classifier form.
2. The system shall return and display a result or the level of risk of the patient developing

HD based on the ML model’s processing of the user’s input.
3. The system shall indicate the features or the entered parameters that contribute to a user’s

risk of heart disease and display appropriate tips to mediate their condition.
4. The user shall be able to print the results page containing the presence of HD and risk

report, along with the entered parameter inputs.
5. The system shall allow users to sign up for a patient or doctor admin account on the

system. By signing up, the users entered data shall be saved in their list of trials on their
account page. For signing up for a doctor’s account, the user shall have to enter more
information to verify themselves as doctors, such as their name, university, place of
practice and registration/TPC numbers. These are the key information required to verify
doctors.

6. The user shall be able to log in to their patient, doctor, or admin account.
7. The patient account shall be able to see the list of their trials of using the HD predictor

form on their account page, which will display the results report along with the entered
parameter inputs.

8. The patient account shall be able to request for assistance from doctors on the platform.
9. After the connection is approved by the patient account, the doctor or patient can

message each other to discuss the results and arrange for further appointment the patient’s
and doctor’s contact information that are unveiled and they can email to set an
appointment.

Non-Functional Requirements
As opposed to functional requirements, these form of requirements entail the behaviour and
properties the system should possess as well as constraints the system should comply with. So,
often these non-functional requirements have a more crucial need to be fulfilled as they dictate
how the entire system functions instead of singular components as seen with functional
requirements. Therefore, if not fulfilled it could render the system unusable.

For this heart disease prediction system, the following are the primary non-functional
requirements that have been identified and need to be fulfilled:

Accuracy
This is the most important non-functional requirement of the heart disease prediction system,
where the system should utilise the chosen best ML model, that should be accurate in processing
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the user inputs to output a correct and valid diagnosis or result. In other words, the system should
possess an admirable performance in classifying inputs to output correct results. Although it is
difficult to obtain a perfect system that is able to attain 100% accuracy in classifying heart
disease among patient records, the system should strive to increase its performance in terms of
the evaluation metrics. Hence, there are several ways the ML model’s performance is measured
and evaluated, as described further in the evaluation metrics or model validation section of the
ML implementation (3.4.6).

Fast Processing Speed
While ensuring the heart disease prediction system returns an accurate result, the system and the
chosen ML model should also be sufficiently quick or require low execution time to process the
user inputs and return the appropriate output. For this project, having a moderate to long training
time of the model is fine, since that section is not always performed in a real-world scenario.
However, the execution time of the system’s operations (ML model testing time) should be low,
which includes retrieving user inputs, processing them using the trained ML model, returning the
output of the ML model, and displaying the output in a clearly formatted results page. This is
because the users utilise the system in real-time and by providing a fast response the users would
not have to wait an extended period of time to obtain their results, which could even lead to a
high bounce rate. Thus, we can test the processing time or testing time of the system, in terms of
seconds, during the implementation (3.4.6).

Reliable
The system should be online, live, functional and accessible at all times and experience little to
no downtime. This is another form of measurable non-functional requirement where we can test
in terms of time or seconds the platform is inaccessible. Thus in the event, downtime does occur
it should not exceed 5 seconds in any one day, to ensure it is not noticeable to the end user and
they can resume with their activities or interactions with the system almost instantly. All in all,
the system should be able to handle multiple concurrent users and activities/interactions, and
simultaneously be less likely to experience crashes and backend errors.

This is to preserve the reputation and reliability of the system. Besides that, it’s to ensure that the
user’s activities or tasks aren’t halted midway. Overall, by keeping platform crashes and
downtime to a minimum, this can ensure the user experience is conserved.

3.6 Technologies and Tools Required
This section details the various tools, technologies, software, libraries, programming and markup
languages utilised throughout the methodology, namely for the system design, development and
design processes of our heart disease prediction/classification system.

Python Programming Language
The Python programming language is to be used throughout the development process, to define
the functions and logic necessary, namely for the implementation of the ML models and for the
development of the web application where the chosen ML model will be deployed. This
programming language was chosen, in order to utilise some important external Python libraries
that are crucial to our development and implementation process, which include scikit-learn for
developing and implementing the ML models and Django web framework necessary for the
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backend or server-side scripting of the web application. Besides that, Python provides a
simplistic, readable and intuitive syntax that mimics natural language along with the numerous
learning resources and support available for the language as well as its libraries (Scikit-learn,
Django, etc.). All this ensures that more focus can be placed on designing the ML models and
web system and reducing the overall development and debugging time requirements, especially
considering the short time constraint.

Scikit-Learn
Scikit-Learn is a free-to-use machine learning library for the Python programming language. It
contains various classification, regression and clustering algorithms that we can utilise to
develop ML algorithms and design hybrid models to be tested with our dataset for finding the
best-performing model for our problem domain of classifying and predicting the onset or
presence of heart disease amongst patients. It can also be used for data mining and analysis
applications. Therefore, in our implementation, methods provided by the Scikit-Learn library
will be utilised for data partitioning, model development, model training, and model evaluation
or testing.

Django
Django is a free and open-source Python-based web framework utilised for the server-side or
backend scripting part of the website development, making it more efficient and rapid to create
safe, secure, and maintainable websites and web applications using the Python programming
language. It promotes the reusability of components and possesses a range of ready-to-use
features, thus ensuring that the web app development process or portion of the development is
not too extensive and completed more easily and rapidly, thus more focus can be placed on
implementing the ML model. It will especially be useful for collecting form inputs from the
CVD prediction or classification form to be stored in the MongoDB server. In our
implementation Django serves as the main backend framework, from which the web app is built,
defining the URL routing, HTML page templating, the user models for creating the different
users accessing the platform (patient, doctor, admin), and for defining the other backend
functions as seen in the MyAPI/views.py file, including handling form submissions, the Django
REST framework for handling forms through API calls, the registration, login/authentication
requests, and loading the various web app pages.

Pandas
Pandas is an external library for the Python programming language that is utilised for data
manipulation and analysis, providing data structures and methods for manipulating numerical
size mutable tabular structures (DataFrame) and time-series. It is typically useful for the data
extraction and preparation tasks of the project, especially owing to its high-level data structures
and tools for data analysis as well as its built-in methods for grouping, combining and filtering
data. Hence, it can be useful for interacting with the dataset, by storing attribute values in a
dataframe that can be utilised for further processing with the ML models.

Numpy
Numpy is another external library for the Python programming language which is a dependency
of pandas, so after installing pandas, we will be able to import the numpy library into our Python
programme. It is one of the most powerful Python libraries, providing mathematical operation
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and is mainly used for scientific computing and working with multidimensional arrays, such as
for matrix processing. Thus, it is important for our implementation of the ML models for
interacting with the dataset which can be treated in the form of a multidimensional array.

Matplotlib
Matplotlib is an external library for the Python programming language which provides plotting
functions, which is useful for data visualisation that are static, animated, and interactive. For this
project, the Matplotlib functions will be necessary for visualising the dataset and the distribution
of its features to help with identifying appropriate preprocessing techniques and patterns in the
dataset. It can also be useful for displaying the graphical output of an ML model.

Keras
Keras is an external library for the Python programming language that provides machine learning
capabilities, such as allowing developers to design and develop deep learning models or neural
networks, including ANN, convolutional neural network (CNN), and RNN. Along with that,
built-in methods for grouping, combining and filtering data are provided. For our
implementation, this library will be used to design and develop NN models to be applied and
tested with the dataset.

Seaborn
Python-based Seaborn is a Matplotlib-based tool for statistical data visualization. With the help
of the library, we can make descriptive and impressive Python visualizations. In our ML model
comparison program, it is utilised to generate multivariate plots such as the correlation heatmap
matrix plot and bar chart for the numerical attributes of the dataset and the individual
multivariate plots in the form of a bar chart for the categorical attributes with the target attribute.

HTML5, CSS
HyperText Markup Language (HTML) is the markup language used to construct the structure of
the web pages of our web applications that will house the ML models. It will be used together
with Cascading Style Sheets (CSS) which is utilised for defining the presentation or style of the
HTML elements to format the pages of the heart disease prediction system in a more
well–designed and clear manner.

MongoDB
MongoDB is the chosen database for the web application implementation as it is used to store the
user models created, their login information, form submissions and data, as well as any other
data that is stored by Django backend framework. The database MongoDB is based on
documents with collections, which are composed of documents, that are the building blocks of a
database. In an RDBMS, documents are essentially the same as records. MongoDB is easy to
develop for and scale, in part because there is no schema required when creating documents and
documents have a field value pair setup akin to JSON. Strings, numbers, arrays, and even other
documents can all be included in values. Especially for this application where no strict structure
is needed for storing the data as seen from its requirements and the kind of data that need to be
stored.
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Hence, a NoSQL database is seen to be the more preferable option, as it is optimised for speed as
well, ensuring records are written and read at a rapid rate to the database. Another advantage of
MongoDB is how it hashes sensitive information, mainly user passwords after accounts have
been authenticated or created. Besides that, the MongoDB database is hosted in their shared
cloud database service, MongoDB Cloud Atlas, in the Amazon Web Services Cloud.

TailwindCSS and DaisyUI
Tailwind CSS is an open-source CSS framework where its primary distinguishing characteristic
is that, in contrast to other CSS frameworks (e.g.m Bootstrap), it does not offer a list of
predefined classes for elements like buttons or tables, instead, generates "utility" CSS classes to
style each element. Thus, a HTML component can be easily styled by just specifying specific
CSS classes for it, as per its documentation. On top of that, daisyUI is a customizable Tailwind
CSS component library that extends TailwindCSS to include more design augmentations and
classes to be specified that can improve the design, layout, structure and interactability of the
site.

Joblib
Joblib offers tools for pipelining Python jobs and is a component of the SciPy ecosystem. In our
program Joblib is utilised in order to pickle the chosen best-performing ML model to be
deployed into the web app, to process form inputs as model inputs and return a classification or
prediction based on the processing of the ML model. So, Joblib or Pickle is a helpful Python tool
that lets you share, commit, and re-load pre-trained machine learning models. It also helps you
save your ML models and reduce time-consuming retraining of the ML models with the dataset.

Amazon Web Services, AWS
AWS provides on-demand cloud computing services and resources. Thus, it is utilised as the
hosting environment for the Django web application of this project through its robust, scalable
and flexible Amazon Elastic Compute Cloud (Amazon EC2) service which provides scalable
computing capacity in the AWS cloud. Thus, the Django web application component of the
project is deployed and hosted on the AWS platform, to improve its accessibility, by simply
accessing the platform through entering the IP address or domain name (explained later as a
domain name is pointed to this IP address) of the web application and further establishing it as a
production-ready application.

Docker
Docker is a free OS-level virtualisation tool that delivers software in the form of packages
known as containers. So, it provides a self-contained system isolated from the host OS, removing
any drawbacks that may bring, by delivering and running the application in a virtualised
environment. This can be seen in the DjangoAPI/Dockerfile. Overall, Docker makes the process
of deploying the Django web app to the hosting environment, AWS, far simpler and in a
structured and systematic manner.

Nginx and Gunicorn
Gunicorn and Nginx are both HTTP servers for Python. Gunicorn, is a production-ready Web
Server Gateway Interface (WSGI) web server for Django and Python applications, as it is robust
and can handle production levels of traffic. It is a significant step up over the default
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development server that ships with Django, which was only used for testing purposes on my
local machine. Gunicorn extends from this, and is even able to handle all the dynamic files. The
call to the Gunicorn method to build and run the Djagno application can be seen in the
Dockerfile. Nginx is utilised as a reverse proxy for Gunicorn owing to its high performance
connection handling mechanisms to serve static and media files, as seen in the
DjangoAPI/nginx/default.conf file.

Jenkins
Jenkins is an open-source automation server written in Java to automate certain aspects of
software development and production websites, including for tasks such as building, testing, and
deploying. Therefore, in this implementation, it is utilised for facilitating and implementing
continuous integration and continuous deliver (CI/CD) workflows or pipelines. In short it allows
commits made to the web app’s connected Github repository to be automatically built, integrated
and deployed with the instance hosted on AWS EC2. The implementation of this Jenkins pipeline
is explained in more depth in the web app implementation section.

Cloudflare
Cloudflare is essentially a free content deliver network (CDN) and Distributed Denial of Service
(DDoS) mitigation service that serves a few purposes for the web app implementation using
Django to make it more production-ready. Cloudflare is the chosen domain name registrar, from
which the domain name heartassist.net was purchased and registered securely with. Along with
this, Cloudflare provides domain name system (DNS) management services to manage the DNS
records of the domain name and the web application and proxy the traffic to the domain name.
Additionally, other Cloudflare configurations that were made to improve the web application and
its production-ready environment is its SSL/TLS certification service feature, caching with its
CDN, and securing against DDoS attacks.

IDE - Visual Studio Code
Visual Studio Code (VSC) is the chosen integrated development environment (IDE) for the
development of this project, both for implementing the ML models as well as for developing the
web application. It is chosen owing to its simplistic design and its useful functionalities in aiding
debugging, syntax highlighting and the execution of programs, especially since plugins can be
easily installed to extend its capabilities.

Adobe XD
Adobe XD is the user interface (UI) design tool used for designing and creating the initial
mockup and prototype of the web application that will integrate with the ML model, It will be
used to design the layout of the web pages that are to be implemented that will serve as a
blueprint or reference point for the development or implementation process. It was chosen as the
ideal UI design tool owing to its intuitive controls ensuring the designing tasks are completed
efficiently with minimal errors. Additionally, it provides default frames with the same sizing or
aspect ratio as a website view (1920 x 1080px), thus ensuring the elements can be placed easily
and accurately to match with the actual implementation or web app. Also, designs on Adobe XD
possess prototyping capabilities, which allow for simple animations to be implemented and
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visualised in the prototype, for example button clicks redirecting to the next page or drop-down
menus in the form.

Visual Paradigm
Visual Paradigm is used to design the UML diagrams to visualise the logic of the web app that
will integrate the chosen ML model. It has intuitive drag-and-drop controls to allow for the
appropriate diagrams to be created efficiently.

Software Testing - Web Browsers
To test the web application that is developed, web browsers will be used, namely, Google
Chrome and Firefox Developer Edition. By testing and observing the system on different web
browsers, we can ensure that the system appears correctly and consistently no matter which web
browser the end-user utilises to access the system. Web browsers will be used as part of the User
Acceptance Testing to check the system from the end-users perspective, ensuring that the form is
submitting, and the links and buttons are working according to requirements.

3.7 Web App Prototype Design
This section displays the prototype design, illustrating the pages and main components of the
web app component of the prospective heart disease prediction system. For this, the online
prototyping tool, Adobe XD, was used to design the system and its layout. The following is a
link to the designs at Adobe XD which can be accessed:
https://xd.adobe.com/view/906f59c0-dd3e-4485-bd9e-d910847abedd-c53c/?fullscreen

Besides that, the following sections contain the attached images of the designs made, to support
the brief narrations. For a clearer and zoomed in image and viewpoint, you may view the designs
through the above link on Adobe XD and using a PC.
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Home/Calculator Page

Figure 24: Prototype design of the Home/Calculator Page
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Explanation of Home/Calculator Page
This home page is the landing page of the system, so when users land on the page, the calculator
or predictor form, which is considered the most important main component of the web app
system, will be present on this main front page. This ensures to improve the ease-of-use and
intuitivity where the site visitor can utilise this form from the first page without having to find
the appropriate button or link on the page to be redirected to a separate calculator page. This
page starts with the sticky header which maintains on the viewport as the user scrolls down. This
header section is consistent in terms of functionality and design across every page in the website.
Another consistent element is the footer which is the same on every page of the website. At this
header section, there’s the navigation bar with the centred menu consisting of 4 buttons namely,
the calculator page button (linking to this home page), the about page button (linking to a simple
about page, which describes the system to the end user and addressing some frequently asked
questions), the log in button (brings up the login form) and sign in (brings up the registration
form).

After that, this front page starts with some text giving a general overview about the system and
its purpose. Then, in the notes section some key information or disclaimers are presented to the
site visitor. Following that is the main component of this page which is the calculator or predictor
form, which accepts user inputs for certain possible risk factors. Hence, the risk factors or input
features to be considered will be used as the labels for form, so when users enter their
information into the fields, the data can be extracted and entered into the chosen best ML model
to process the information and output a result. For now, the labels used are general indicators or
risk factors for heart disease screening, and after the ML implementation process and the data
understanding and feature selection stages, the exact input fields and labels to include for this
form will be more evident. Error handling will be performed by this form, using Javascript, to
check the user input and to ensure that data inputted is in the right data type and range to ensure
it can be inputted into the ML model and the correct and appropriate output is generated. Next to
some of the fields which may be difficult for the user to comprehend, there is a button, where
on-hover, it will display overlay information about the particular field and question and the data
it is expecting. This can help users identify and know what information to input into a particular
field, hence, further improving the navigability and usability of the system. After the user has
filled all the necessary fields, they may submit the form, by clicking the Calculate button, reset
the form to its blank state using the Reset button, or switch to the US/Imperial or metric units for
certain input fields, where the standard of measurement may vary for different regions.
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Home/Calculator Page With Results

Figure 25: Prototype design of the Home/Calculator Page With Results
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Explanation of Home/Calculator Page With Results
After the user has submitted the form from earlier with their input data passing the error
handling, within the same calculator/home page, the output of the processing done by the ML
model using the input data will be displayed. So, tentatively this is the envisioned design of the
results presentation or output. It will start by displaying the percentage of risk associated with the
particular user in developing CVD or HD. Then, there will be a list of additional or more
in-depth analysis on the results. Here, a description of the user’s risk and the contributing factors
based on the input data will be presented. Hence, based on the input data, the list here will show
the specific factors contributing to the risk percentage, along with some background information
justifying the reason or explaining why the factor is considered, and the ways to mitigate this risk
factor. The user’s inputs are also displayed, to allow for easy referral to compare with the result.
The user has the option to either print the result by clicking the Print button or to attempt at
submitting another form by clicking the Retry button. If the user wishes to save their results to
the system for future review or for consulting with a doctor, as well as to connect and reach out
to a doctor on the platform they may sign in or register for a patient account.
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Registration Form
For Patient

Figure 26: Prototype design of the Patient Registration Form

For Doctor

Figure 27: Prototype design of the Doctor Registration Form

For Admin
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Figure 28: Prototype design of the Admin Registration Form

Explanation of Registration Form
There are 3 types of registration forms, for patients, doctors and admins. The registration form
for the patient and admin accounts appear alike with the same general input fields required for
typical account verification and creation. However, for the doctor registration form, tentatively
there are three extra input fields (Registration/TPC number, Place of practice, and University) to
verify that the user is a licensed practising doctor to ensure that the users on the system connect
and contact with verified and true medical practitioners. Hence, after the input fields have been
filled, there is a box to tick to subscribe to the website newsletter, followed by a privacy policy
statement, and a button to confirm the registration. For the patient accounts their account will be
authenticated and created after the submission of the registration form. Whereas for admin and
doctor accounts, will require the existing admin to check and verify the details before approving
the account creation, and allowing them to log in to their accounts.
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Login Form

Figure 29: Prototype design of the Login Form

Explanation of Login Form
Similar to the registration form, there are 3 separate login forms as well, to make login form
handling more efficient. At the top, users can select whether they require the patient, doctor or
admin form. Then, there are the standard login credential input fields, email and password. A
Remember Me checkbox to make logging in again easier and a Forgot Password button to help
users who can’t access their account. Finally, the Log In button submits the login form along
with their credentials to authenticate the user and authorise their login request.

103



Patient Account Page

Figure 30: Prototype design of the Patient Account Page
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Explanation of Patient Account Page
This is the account page of a patient account on the system, typically, what they will see after
logging in. First, it displays the Display Name of the account, other account details, how long
they have been a member for. Then, is a list of their trials of using the heart disease risk
calculator system, in case they would like to compare their results and inputs for reviewing and
discussions with their doctors. They can view more information for the individual reports. After
that, is the details of their connected doctor, in case they would like to view more information
regarding their doctor (View Full Info) or they can also message them (Message). For the current
envisioned system, we are planning to only allow the user to connect with one doctor at a time,
to prevent the doctors on the platform from being overloaded or spam messaged by many
different patient user accounts. After that, is a list of doctors the patient account can connect to,
so they can see some general information about the doctor before requesting to connect with
them. As another method to avoid the doctor account from being spam messaged by patient user
accounts we made sure that a patient user shall request to connect with a doctor, and only after
the connection request is approved by the doctor will they be able to message amongst each other
to further discuss the results.
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Doctor Account Page

Figure 31: Prototype design of the Doctor Account Page
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Explanation of Doctor Account Page
Similar to the patient account page, this page is what the user sees after logging into their doctor
account on the web app system. It starts off with displaying information that the user has entered
previously, as well as new information they can add to improve their profile on the system. After
that, is a list of their connected patients, which they can choose to see the particular patient’s info
(View Full Info), view their results (View other trial results) or to message them (Message).
Following that, is their list of patients that have requested to connect with them. So, the doctor
user can check their info (View Full Info), their recent results from using the system (View Full
Results), and either choose to accept or reject the connection request. As mentioned earlier, only
after approving the connection request will the messaging be able to take place between the
particular doctor and patient account.
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Admin Account Page

Figure 32: Prototype design of the Admin Account Page

Explanation of Admin Account Page
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Similar to the two other account pages, the admin account page starts off by displaying the
general information that the admin user has previously entered. Then, there is a table consisting
of a list of pending doctor accounts, where the doctor registration forms were sent by the
particular user but are pending approval from the system administrators. Hence, each record in
the table is a registration request, where the attribute values are the credentials the user used to
sign up. Thus, this tabular representation of information makes it easier for the admin to view
and verify the entered information to determine if the user is a licensed, valid and practising
doctor. They can choose to email the user for further clarification or verification, and then they
can either approve or reject the account authentication request. There is a similar table after that
with records of users trying to register for a system admin account on the platform. Hence, the
existing system admins can check these information entered to determine if the user is a valid
system administrator before permitting them to access the system by logging in with their
credentials.
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3.8 UML Diagrams
The following consists of Unified Modelling Diagrams (UML) Diagrams representing the
operations and information and logic flow in the web component of the envisioned ML-based
heart disease prediction system, which were constructed with Visual Paradigm. Screenshots or
exports of the diagrams are attached below:
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Use Case Diagram

Figure 33: Use case diagram

Explanation of Use Case Diagram
The use case diagram displays the possible main functionalities that are planned for the web app
of the ML-based heart disease prediction system to fulfil, as well as illustrating the methods in
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which different actors, end-users or stakeholders can interact and utilise the system. So, in a
sense it visualises all the possible interactions the user can perform with the web app system. All
in all, it provides an overall impression of the system.
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Sequence Diagram

Figure 34: Sequence diagram
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Explanation of Sequence Diagram
This sequence diagram is intended to showcase the flow of the processes that the end-user can
perform with the system, such as using the heart disease risk calculator form, displaying its
results, printing its results, saving the output to their account, and connecting with doctors on the
platform.

114



Activity Diagram

Figure 35: Activity diagram

Explanation of Activity Diagram
This activity diagram illustrates the flow of processes and activities of the possible interactions
and operations that the end-user can perform with the web app system. Hence, the diagram
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showcases when the user is using or entering data in the heart disease risk calculator form,
displaying its results, saving the output to their account, and connecting with doctors on the
platform.
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Class Diagram

Figure 36: Class diagram

Explanation of Class Diagram
This class diagram illustrates the structure of the database of the system, showing the different
classes in the system and how they interact with one another. It helps us to identify the
components in the system and their relationship between one another. Also, it enables us to
identify the attributes of each class, and so it is easier to implement the models in the models.py
file of the web application implementation. These classes and what this class diagram represents
are explained in more detail in the “Creating User Models With Django” section of the Django
Web App Implementation section.

3.9 Web App Implementation
After the ML implementation stage and the model was been developed and chosen, it was
integrated into a web application system to allow users to easily access and interact with it
through entering the HeartAssist.net Uniform Resource Locator (URL) to their web browser.
This will allow them to enter their details into a form on the website which will then be inputted

117



into the ML model, which will process these inputs and predict the likelihood of the user
developing HD or CVD.

Therefore, a simple web application was designed and developed, with functionalities including
form saving, submission, user login and registration, user models (patient, doctor) for rendering
different types of pages based on the logged in account, and the ability for users to connect with
doctors and patients on the platform. Hence, this section describes the main stages to developing
and deploying this web application:

1. Django Web App Implementation
Firstly, the Django app was created with the name DjangoAPI, with the main app folder name
being DjangoAPI and the secondary folder housing all the custom application files to build the
application in the MyAPI folder. This DjangoAPI folder contains the settings file describing the
default system configurations, such as the allowed hosts for connection, installed apps on top of
Django that were utilised, middleware configurations, and default static and media root files.

The urls.py file for this, points to the urls file in the MyAPI, as it is the directory housing all the
custom app files used to customise and build the app pages, to keep things separate. The urls.py
file specifies all the available URLs that can be visited or the URLs that are utilised for
operations by the web app (e.g., for connection with doctor/patient operation, with the /connect/
url).

a) Creating User Models With Django, MyAPI/models.py
Django Models is the built-in feature of Django that creates tables, their fields, and constraints in
the chosen database (in this case, the MongoDB database) based on the defined models in this
models.py file (MyAPI/models.py) that need to be created for the web app. So, after defining the
classes of objects, the Django application will handle the SQL (Structured Query Language) or
in this case, the database commands to store those model data. Thus, this simplifies the tasks of
defining the user models that are present on the website, and that users can sign in to (Patient,
Doctor, Admin) as well as to create a class for heart disease prediction form submissions
(heartDiseasePrediction).

The MongoDB database credentials to store/save these model information have been configured
in the DjangoAPI/settings.py file. For this, the Djongo engine is utilised, which acts as a
database connector between the Django application and MongoDB. It is an extension to this
Djagno object relation model (ORM) framework to interface with the MongoDB database. Thus,
it essentially makes it easy for this Django application to connect with the MongoDB database,
that has been created. Therefore, the database host and the database name information are
configured, after setting up and hosting the MongoDB at the Atlas platform. The MongoDB
database is hosted in their shared cloud database service, MongoDB Cloud Atlas, in the Amazon
Web Services Cloud. The region chosen for this is kept the same as the AWS cloud for hosting
the web application, which is ap-southeast-1, Asia Pacific (Singapore). This ensures both the
components are hosted in the same region, alleviating latency due to location differences as their
both in the same region.
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So, the heartDiseasePrediction class which is for creating and storing form submission data has
the model inputs as its defined attributes or fields, along with fields for holding the result of the
ML model, the user information (User object), and the date and time the form was submitted.

For the user models, there is one abstract User class from which there are the other child classes,
Doctor, Patient, and Admin inherit from. Each of these are types of users that the user can log in
to, they serve different purposes as mentioned in the requirements section, where patients can
connect with doctors to consult with regarding their form submissions. Also, they have different
attributes, since they serve different purposes for the particular user type.

Overall, the class diagram in figure 36 describes the relationship between the defined user
models on the platform.

The admin user model is the superuser of the system who has administrator privileges to remove
users on the platform. This account can be created through the terminal using the command
“python manage.py createsuperuser” and then entering the required credentials, whereas for the
other two user models, accounts can be created through a simple registration page that has been
designed and developed, which will be explored and explained further in the next section. So, the
admins of the platform have a separate login page to access the admin actions on the system at
https://heartassist.net/admin. A user profile on the platform can create and save a
heartDiseasePrediction object, which is an object of that class, that stores the form inputs, results
and information of which user created it. Thus, it is represented by the composition relationship,
when the user model is deleted, its stored form submission are also removed from the database.
Non-logged in users can only create form submissions and obtain a result, but the form is not
saved in this manner to the database.

b) Defining Website Functionality, MyAPI/views.py
The views.py file (MyAPI/views.py) contains Python functions that receive HTTP requests and
then returns a response, based on the purpose of those functions. Thus, it is utilised for rendering
various pages on the website and their various functions. So, the following are the custom
functions that have been defined and the purpose they play for the website:

● heartDiseasePredictionAPI
This user-defined function receives API requests (GET, POST, PUT, DELETE, and PURGE),
and performs their corresponding action concerning the heart disease prediction form
submission. For instance the GET API request to the website URL,
https://heartassist.net/heartDiseasePrediction, will obtain all the form submissions stored in the
database, the POST API request, creates and saves a form submission (this should be sent along
with a JSON dictionary of the form inputs), the PUT request edits or updates previously
submitted form submissions, the DELETE request removes a single submitted form submission,
and the PURGE request removes all the form submissions stored in the website’s database.
Therefore, these API submissions are secured with the csrf token, preventing requests from being
made outside the website. The original intention was to make these API calls the mode for
creating and deleting form submissions, however, it was found that it was easier and faster to use
function calls from within this views.py file for the handling form submissions, especially
considering no other frontend framework is used with this web app. Therefore, this API function
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was simply used to test whether form submissions that were made on the site were successfully
stored in the database, along with Postman, an API platform for building and testing API
requests on web applications.

● heartForm()
This is the main function for processing form submissions made on the website. The main URL
or the home page (https://heartassist.net/) as specified in the MyAPI/urls.py file, calls this
function so that the heart disease prediction form is rendered and displayed on the home page,
awaiting a POST API request after submitting the form. Otherwise, only a blank form, with no
inputs is displayed on the home page. The HTML forms on this website, including this heart
disease prediction form, the login, patient/doctor registration, and profile edit forms, are handled
by Django in the forms.py file. So, as mentioned previously, as there is a model created for the
heart disease prediction form submissions in the models.py file to store its fields and inputs, a
ModelForm can be created which renders the HTML form automatically for these fields. Thus,
the model used and the fields receiving input is specified. Additionally, the widgets field can be
used to hide certain fields that are not taking inputs, such as the form result and user, which will
be returned after the form has been submitted (for result) and the user is found to be
authenticated and logged in (for user). The labels field is used to change or customise the fields
for input fields, so they reflect more information regarding a particular form field, guiding the
user to know what is the type of information they need to enter there. Additionally in this
modelForm class, the other form validation methods (clean_attributeName) are implemented to
ensure users enter correct and valid values for the input fields, otherwise, a ValidationError is
raised which will display an appropriate error message, guiding the users to know what was the
error made in the filled form and how to rectify it.

Therefore, after a user has filled in the form fields and submitted the form, a POST request is
made due to the form submission, and the request consists of a JSON dictionary with the
field-value pairs. The values that have been entered will be checked to ensure they are clean and
not blank otherwise a validation error will be raised as seen in this heartForm() function along
with checking with the other form validation functions defined in the forms.py file.

After that, the addd array is initialised, which is used to store information regarding the user's
form submission and then return additional information to indicate to the user, the fields they
filled up that might contribute to the heart disease diagnosis. Thus, indicating the features or the
entered parameters that contribute to a user’s risk of heart disease and display appropriate tips to
mediate their condition.

Following that, the request or form submission values is run through the ohevalue() function,
which converts the categorical attributes of the form inputs to dummy attributes and their
corresponding values, to match the input fields of the ML model. Thus the form input values can
be directly entered into the ML model as inputs. After that, this processed form input is entered
into the heartResult function which is the ML model function. Hence, it starts by loading the
chosen best ML model from the ML implementation section that was pickled, using the Joblib
method load(). Then, the scaler (MinMaxScaler) that was previously fitted with the dataset is
also loaded and used to transform the form inputs based on the same configurations as in the ML
implementation, to ensure consistency and the values are scaled accordingly. After that, the
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transformed form inputs are inputted into the loaded ML model and used to make predictions
(y_pred). This computed y_pred is stored in a Pandas DataFrame and returned to the initial
function call, to display the results of the ML processing of the form inputs to the end-user.

The context dictionary is used to specify the Python variables that have been instantiated and the
identifiers to use to call and render them in the Django HTML template.

After that, the result of the form input processing is added to the result field of the form
submission request. If the user is authenticated and logged in, the User object of the logged in
user is added to the user field of the form submission request and the form is saved to the
database under their user profile. Thus, it can be shown on their account page.

● register()
This function is for rendering the register.html file and called when the
https://heartassist.net/register/ URL is requested. From here, users can select whether they want
to register as a patient or doctor, and the corresponding registration will be rendered, by calling
the appropriate function, either patient_register() or doctor_register(). These 2 functions perform
similarly by creating and rendering the corresponding form class, DoctorSignUpForm or
PatientSignUpForm as specified in the forms.py file. This form is created with the use of the
UserCreationForm method of the django.contrib.auth.forms library. Thus, this form possesses the
logic to handle the authentication of new users based on the custom fields that are specified. So,
after the user profile has been authenticated and created, the profile will be saved to the database,
as seen in those 2 classes in the forms.py file and they will be automatically logged in and
redirected to the home page.

● login_request() and logout_view()
The login_request() function is for rendering the login form to the user. For this the
AuthenticationForm method of the django.contrib.auth.forms library is displayed which
possesses the logic to handle the authorisation of login requests from users and handle the user
sessions, so that the user stays logged in even if they close the website and revisit it later on, until
they have requested to log out or have cleared their cookies/sessions on their browser. Similarly
the logout_view function as the name suggests logs out a user from their account by calling the
logout method of the django.contrib.auth library, and redirects them to the home page.

● account() and change_connection()
The account() function renders a different account page HTML file, for the
https://heartassist.net/account/ URL with different information that is presented based on the type
of user that is logged in. For instance, if they are a patient account, the “account_patient.html” is
rendered, and the information that is rendered include the patients information (name, profile
details, contact details), heart disease form submissions, and list of connected doctor or doctors
on the platform to connect with. Otherwise, for a doctor account, the “account_doctor.html” is
rendered and displayed, starting off similarly by showing the information of the doctor (profile
details, contact details, and other medical professional details), heart disease form submissions,
and list of connected patients. Else, for an admin account, the https://heartassist.net/account/
URL will redirect them to the admin page where they can perform their admin actions including
managing users and form submissions on the platform as well as changing their profile details
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such as account password. For this, page the default Django administrator page was utilised as it
provided all the functions that were needed for an admin user of this system as described in the
requirements, and implementing it was more efficient and more attention can be put to the other
more crucial aspects such as developing and improving the ML model.

Some special functionalities that are implemented in this account page include, for patients, they
can choose to connect with a doctor, and the doctor will be added as their ConnectedDoctor. This
change will be reflected in the particular doctor account as well, where the patient will be added
to their list of connected patients. From there, patients can choose to contact the doctor using the
contact information that is presented. They can also remove the doctor and choose a different
doctor account by selecting the Remove button and likewise, the change will be reflected in the
doctor’s list of connected patients. Doctors also have similar controls where they can remove a
patient from their list of connections. These connection operations were handled by the
change_connection() function in the views.py file, where after selecting the connect or remove
button it will visit a URL where the operation selected (either add or remove) and the user’s
primary key will be added to this URL. Calling this URL will initiate the change_connection()
function, and the operation and the user’s primary key will be passed in as inputs to perform the
corresponding action on the particular user. Therefore, the remove operation will remove a
doctor from a patient’s list of connected doctors (change will be reflected on the corresponding
doctor’s side as well), the remove-from-doctor operation will remove a patient from a doctor’s
list of connected patients (change will be reflected on corresponding patient’s side as well), the
add operation will add the particular doctor to the patient’s list of connected doctors (change will
be reflected on corresponding doctor’s side as well). For doctors, they have an additional button
to view their patient’s list of heart disease prediction form submissions, this will call this
change_connection() function and call the view-trials operation to return and rerender the
account page with that particular user’s form submission information displayed.

● edit_account() and changepassword()
The edit_account() function is called by the https://heartassist.net/account/edit/ URL and renders
the edit_account.html page. It renders the EditProfileForm and ProfileUpdateForm from the
forms.py file, the first to display fields of the Django default user model and the second to render
additional fields of the custom User model in the models.py file. Therefore, this page has a
combination of the fields to allow users to change their profile details, and they can then submit
the form after form validation to make and apply the changes to their profile in the database.
Through here, they can also add an image to their user profile.

Similarly, the change_password() function is called by the
https://heartassist.net/change-password/ URL and renders the PasswordChangForm from the
django.contrib.auth.forms library, which also provides the backend logic to verify the old
password entered and implement and save the new password to the Django user model.

2. Developing the Pages of the Web App Using Django
For most of the above mentioned functions in the views.py file, it renders a corresponding
HTML file. Django templating is utilised where the HTML files contain Django markup, such as
variables surrounded by {{ and }} for variables as well {% and %} for tags for arbitrary logic in
the rendering process, primarily for “if” statements and “for” loops. This makes it easier to make
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the HTML pages dynamic, so that results can be presented after a form has been submitted or to
present account information in the user’s account page.

Therefore, the HTML files or the templates created for this web application are stored in the
MyAPI/templates folder. Here, the headerPage is the main skeleton consisting of the header or
navigation bar and the footer, which is consistently the same on every page. The navbar consists
of the site logo (pointing to the home page), the currently logged-in user and log out (if
authenticated) or the login and registration buttons (if not authenticated). Then, the content of
this template, will house the other HTML files that will be rendered, depending on the URL that
is entered and subsequently the views.py function that is called.

To make the frontend editing and designing quicker with better design elements (e.g., tooltips,
button animations, table layout, etc.), the HTML pages were designed using TailwindCSS and
DaisyUI classes. So, to style a HTML element a predefined class following both library’s
documentation was assigned to it to achieve the desired design. Therefore, through referring to
the documentation and through rounds of trial and error the ideal design for a particular HTML
element was found and implemented. Overall these two technologies work hand in hand to make
designing the frontend of the web application effortless and more rapid, so that more attention
and time can be placed to the more important aspects of the project, especially designing the
backend and integrating the ML implementation.

3. Deploying the Django Web Application
Finally, after all the requirements and system functionalities of the web application were
implemented, it was deployed to the AWS EC2 instance, which is currently hosting it. The goal
here is to make the web application easily accessible by the end-user, simply by entering a URL
into their search engine. Hence, making the application production-ready as it can be accessible
from anywhere, at all times, at an acceptable loading speed, these are part of the aforementioned
non-functional requirements that the system was desired to achieve.

a. Setting up Gunicorn and Nginx
The first part of the deployment process was setting up Gunicorn and Nginx, which as mentioned
before are HTTP web servers for this Python Django web application. Therefore Gunicorn was
utilised as the Web Server Gateway Interface (WSGI) web server for the application by first
installing its package and then the Gunicorn server process can be invoked, initiated or used to
build the application by calling its WSGI application object in the DjangoAPI/wsgi.py file, and
binded to the localhost’s port 8000 using the command “gunicorn DjangoAPI.wsgi:application
--bind 0.0.0.0:8000”. This is used in preference to the default development server that ships with
Django, as it can handle more requests as in a production environment and can handle all the
applications’ dynamic files. Along with that, Nginx was set up and configured as a reverse proxy
for Gunicorn to serve the application’s static and media files. So, the Nginx configurations can
be seen in the nginx directory in the default.conf file. The Dockerfile in that directory consists of
the steps to set up the Nginx configurations and will be initiated when the docker image is built
in the following step.

b. Dockerising the Django Web App
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So, the next step of the deployment was to “dockerise” or wrap the Django web application in a
docker container. To implement this, the Dockerfile was created (found in the DjangoAPI
directory) which provides instructions to build the web application. So, it starts by importing the
Python 3.8-slim-buster image or environment as the web application is built with Django which
is Python-based. This will serve as the OS that is delivered with the web app to serve as the OS
or environment to run the app. Then, the contents of the requirements.txt file are copied and
installed, which contains the libraries and dependencies required to run the application. After
that, the aforementioned Gunicorn command was utilised to build the Django web application.
With this, the Django web application can be built on any server or hosting platform after the
system files have been added there by executing the command “docker build -t heartpred .” and
then “docker run -p 8000:8000 heartpred” to bind the application to the localhost’s port 8000.
Additionally, the docker compose tool was used to help define and share the container of the web
application. This will make it more easier to deploy and rebuild the Django web application on
the AWS EC2 instance, simply by calling the “docker-compose up --build” command. It was
used to create the YAML file, docker-compose.yaml, which specifies the instructions to set up
the Nginx configurations pointing to the application’s static and media resources and the
previous Dockerfile to build the Django web app.

c. Uploading the Source Code Base to a Github Repository for Version Control
Following that, these source code of the program was added to a Github repository used for
version control of the web application. Sensitive information, such as the security key were
added as an env variable and ignored from being pushed to the Github repository ( added to
.gitignore) so random unauthorised visitors cannot access it from the Github repository. By
adding the program source code to Github, this allows to control the version of the program,
reverting back to previous builds or versions, in the event there is a broken feature, errors or bugs
in the platform. Thus, making development safer and more structured as changes or commits to
the code base will only be pushed to the main branch, once it is found to be functional in the
local testing environment. Additionally, by having the codebase in a Github repository, it can be
easily cloned anywhere, in this case, more importantly at the hosting environment in the AWS
EC2 instance.

d. Configuring the AWS EC2 Hosting Environment
Therefore, the next step is to setup and configure the hosting environment at AWS with an EC2
instance. For this, after the EC2 instance had been created, using the terminal the EC2 instance
was accessed remotely using Secure Shell Protocol (SSH). First, the Github repo was cloned in
this new environment. After that, using the aforementioned configured docker-compose
command, the Django web application was built and tied to the EC2 instance’s public IP
address’s 8000 port. Then, after the application was found to be accessible and functional using
the public IP address, an elastic IP address was configured, which is a static IPv4 address
designed for the EC2 instance. This allows the IP to remain static and constant, even if the server
is stopped temporarily, preventing issues down the line when the server is halted for some
reason.

The server was migrated to the same region as the MongoDB database hosted in the Amazon
Web Services Cloud at the ap-southeast-1 region in Asia Pacific (Singapore). For this, an image
of the server was created, and then in the new region, a new EC2 instance was created or

124



replicated based on the previously created image. After that, the docker-compose commands
were initiated to rebuild the web application. After performing this migration, the speed of the
site page loading and changes or updates to the database saw a significant increase.

e. Setting Up Cloudflare for Linking Domain Name and DNS Management
The next step was to register the domain name, heartassist.net, with Cloudflare as the domain
name registrar. By registering with Cloudflare, it was used as the domain name system (DNS)
management service to manage  DNS records of the domain name and the web application.

Therefore, this allows for the heartassist.net domain name to be attached to the AWS EC2
instance public elastic IP address, by creating an A record for the heartassist.net domain name
with that IP address as its content. This allows users to visit and access the web application
simply by entering heartassist.net into their search engine, instead of having to enter the
unintuitive IP address and port number. The traffic to this domain name is also proxied to
improve the security and performance of the web application.

Besides that, other settings were configured in the Cloudflare settings or dashboard. For instance,
some features of Cloudflare that were utilised includes the Secure Sockets Layer/Transport Layer
Security, SSL/TLS certification service, which improves the security of the website by
encrypting HTTP traffic to and from the webservers with SSL, which also has search engine
optimisation (SEO) benefits, owing to the site’s improved security. Cloudflare handles the SSL
certificate lifecycle to extend security to the site visitors. Besides that, Cloudflare is used as a
CDN to deliver the website and its assets in the form of cache over its distributed network of web
servers, thus improving the website's performance and load times, wherever in the world it is
loaded up at. Along with that, Cloudflare improves the security of the website by protecting the
site against DDoS attacks, bots, targeting APIs, and excessive requests to the web server. These
optimisations were seen to make a significant improvement to the website’s page loading speeds
and navigation between the pages when tested with GTMetrix and Google PageSpeed Insights,
with time to functional being less than a second.

f. Configuring Jenkins as the CI/CD component
Finally, Jenkins was set up and configured on the AWS EC2 instance to allow Git commits to be
deployed with this hosted application. So, for this, the Jenkinsfile was created in the DjangoAPI
directory, which contains the pipeline with instructions to build the Django Web Application
using the aforementioned docker-compose function.

This pipeline consists of a sequence of required tasks to build and run the Django web
application. Thus, more specifically, the Jenkins CI/CD pipeline connects the Django web
application hosted in AWS to its Github code repository, so when a new commit, update or
change is developed and made to the main branch of the repository, this CI/CD pipeline
facilitates continuous delivery or the testing of this new commit, building and packaging code,
production staging and environment (continuous integration), and once the tests are passed it
automates the final step which is to deploy the new updates by building the new software with
the application or deploying the updated code (continuous deployment).
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Overall, Jenkins pipelines quickly find bugs in a code base, creates the software, automates
testing of builds, get the code base ready for deployment (delivery), and finally deploy the code
to the cloud server, in this case, the AWS EC2 instance. The Jenkins dashboard can be accessed
by visiting the public ipv4 addresses 8080 port  at http://54.179.245.143:8080.

126

http://54.179.245.143:8080


4. Results and Discussion
This section presents the results of the testing performed on the ML models and the web
application, along with providing an explanation or discussion for these results, while relating
back to the project's initial objectives and goals to determine if predetermined requirements have
been fulfilled. Thus this section is divided into those two sections, catering to the ML algorithm
study of the project and validating the web app implementation.

4.1 ML Implementation Results and Discussion
The evaluation of the ML algorithms was performed using a laptop equipped with an M1 Pro
processor and 8.82GB usable main memory. The evaluation metrics used to evaluate the ML
models include accuracy, precision, recall, f1-score, MSE, RMSE, MAE, misclassification rate,
training time, testing time and total time. Each of these metrics are explained in more depth in
the methodology section under model validation, explaining what the individual evaluation
metrics describe, denote, convey, and how they are measured or implemented in the program
(using the user-defined modelValidation() function).

The full table of the ML model evaluation metric results are available in Appendix A for
reference. Throughout the ML implementation stage there are a number of manipulated variables
that were studied, to see their effect on the model performance. So, they were manipulated to
find the optimal values that maximise the model’s prediction accuracy while minimising its error
rate. Therefore, these manipulated variables can be narrowed down to the dataset features (final
features/attributes that were utilised can be found in 3.4.1 under the Methodology section), the
data preprocessing techniques used (the different data preparation methods were used and the
specific final chosen technique can be found in 3.4.3 under the Methodology section), split ratio
(tested Train:Test ratios include, 50:50, 60:40, 70:30, 80:20, and 90:10), the model
hyperparameters (the tested and finally chosen hyperparameters can be found in 3.4.5 under the
Methodology section). The table in Appendix A, presents the evaluation metric results of the
different ML models when the different split ratios are used, when the features used,
preprocessing performed, and hyperparameter values are the aforementioned in the Methodology
section.

To narrow it down, and for easier reference, the following table presents the evaluation metrics
of the ML models when the split ratio is 80:20, which is found to generally produce the
best-performing models. This table contains the best performing model, which is the
“StackingClassifier model with random forest” as its final estimator, since it has the highest
accuracy, precision, recall, f1-score and MCC scores, while minimising on MSE, RMSE, MAE,
misclassification rate, training and testing time, although its not the lowest in terms of these
metrics. Therefore, the following sections explore the underlying information from the
comparison of the different split ratios, prediction accuracy results (Accuracy, Precision, Recall,
F1-Score, MCC), error rates (MSE, RMSE, MAE, and Misclassification Rate), training time and
testing time of the different models. This will help solidify the reasoning behind choosing the
stacking classifier with the random forest as the final estimator model as the chosen model to be
deployed.
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Table III
Results of ML model validation and evaluation metrics for 80:20 Train:Test split ratio

Algorithm Parameters Accurac
y

Precisio
n

Recall F1-Scor
e

MSE RMSE MAE Misclas
sificatio
n Rate

MCC Trainin
g Time

(s)

Testing
Time (s)

Total Time (s)

SVC kernel: 'rbf'
C: 20
gamma: 1

0.841849 0.84184
9

0.84184
9

0.84184
9

0.40146 0.63360
9

0.22627
7

0.15815
1

0.80251
2

0.10457 0.026688 0.131258

KNN n_neighbors: 3
weights:
‘distance’

0.783455 0.78345
5

0.78345
5

0.78345
5

0.60583
9

0.77835
7

0.32360
1

0.21654
5

0.72999
9

0.00029
1

0.008914 0.009205

NB var_smoothing:
0.43287612810
830584

0.476886 0.47688
6

0.47688
6

0.47688
6

1.76642
3

1.32906
9

0.86618 0.52311
4

0.34908
2

0.00057
5

0.00027 0.000845

DT max_depth:
None
criterion: 'gini'

0.683698 0.68369
8

0.68369
8

0.68369
8

0.99026
8

0.99512
2

0.49878
3

0.31630
2

0.60450
6

0.01376
6

0.000143 0.013909

XGB n_estimators:
100
max_depth:
None
subsample:
0.75

0.844282 0.84428
2

0.84428
2

0.84428
2

0.40146 0.63360
9

0.22627
7

0.15571
8

0.80612
1

1.88559
3

0.001801 1.887394

RF n_estimators:
200
max_features:
'auto'
max_depth:
None

0.83455 0.83455 0.83455 0.83455 0.53284
7

0.72996
4

0.27007
3

0.16545 0.79382
3

0.37233
4

0.013986 0.38632
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criterion: 'gini'

EXT n_estimators:
200
max_features:
log2
max_depth:
None
criterion: 'gini'

0.836983 0.83698
3

0.83698
3

0.83698
3

0.47688
6

0.69056
9

0.25304
1

0.16301
7

0.79652
3

0.23796 0.017439 0.255399

KMC n_clusters: 200
max_iter: 150
algorithm:
‘lloyd’

0 0 0 0 10320.1 101.587
9

84.2579
1

1 -0.0084
9

0.70278
7

0.000468 0.703255

LR C: 1000.0
solver: 'lbfgs'

0.527981 0.52798
1

0.52798
1

0.52798
1

1.34793
2

1.16100
5

0.71532
8

0.47201
9

0.40942
9

0.02630
2

0.0000913 0.026393

ANN activation:
‘tanh’
solver: ‘adam’
hidden_layer:
(27, 27, 27)
max_iteration:
723

0.785888 0.78588
8

0.78588
8

0.78588
8

0.51824
8

0.71989
5

0.30900
2

0.21411
2

0.73245
2

2.05603
3

0.001495 2.057528

StackingClassif
ier with  SVC

Final Estimator

final_estimator
: svc_model

0.798054 0.79805
4

0.79805
4

0.79805
4

0.47688
6

0.69056
9

0.27737
2

0.20194
6

0.74764
8

25.0752
8

0.100786 25.17607

StackingClassif
ier with KNN

Final Estimator

final_estimator
: knn_model

0.827251 0.82725
1

0.82725
1

0.82725
1

0.39659
4

0.62975
7

0.23601 0.17274
9

0.78389
8

25.0037
9

0.069261 25.07305
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StackingClassif
ier with DT

Final Estimator

final_estimator
: dt_model

0.793187 0.79318
7

0.79318
7

0.79318
7

0.42092
5

0.64878
7

0.27007
3

0.20681
3

0.74148
6

25.2247
4

0.064495 25.28924

StackingClassif
ier with XGB

Final Estimator

final_estimator
: xgb_model

0.86618 0.86618 0.86618 0.86618 0.28223
8

0.53126
1

0.18004
9

0.13382 0.83257
7

26.8688
6

0.070001 26.93886

StackingClassif
ier with RF

Final Estimator

final_estimator
: rf_model

0.868613 0.86861
3

0.86861
3

0.86861
3

0.31143
6

0.55806
4

0.18491
5

0.13138
7

0.83579
9

26.6093
6

0.081212 26.69057

StackingClassif
ier with EXT

Final Estimator

final_estimator
” ext_model

0.863747 0.86374
7

0.86374
7

0.86374
7

0.30900
2

0.55588 0.18734
8

0.13625
3

0.82951 29.8443
8

0.093992 29.93837

StackingClassif
ier with MLP

Final estimator

final_estimator
: mlp_model

0.817518 0.81751
8

0.81751
8

0.81751
8

0.39659
4

0.62975
7

0.24574
2

0.18248
2

0.77295
3

31.4731
5

0.112023 31.58517
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Comparing Split Ratios
Comparing the evaluation metric values and performances at different split ratios, it is seen that
the best tested split ratio is 80:20, where it contains the top 5 best performing ML models,
namely the StackingClassifier with RF, XGB, EXT, and normal XGB, and SVC models. From
viewing the performance metric values, we can rank the split ratios in this descending order,
80:20, 90:10, 70:30, 60:40, and 50:50. Thus, a split ratio of 80% training data and 20% testing
data is found to be the right balance to minimise overfitting and underfitting, so that the ML
models are not overly fitted to the dataset, to the point they cannot generalise to actual real-world
data (overfitting) and they are well trained enough to possess acceptable prediction accuracy (not
underfitting).

Comparing Accuracy, Precision, Recall, F1-Score and MCC Scores
With the split ratio fixed to 80:20, we compare the ML models performance metrics within that
subset of the table. Here, we can see that the best performing models in terms of accuracy,
precision, recall, f1-score and MCC scores, in descending order are the StackingClassifier with
RF, XGB, EXT as the final estimator, and the normal XGB, and SVC models. Therefore, the
StackingClassifier with Random Forest as the final estimator being the best-performing model in
this respect, earned its place as the best-performing model with the best prediction accuracy.
Additionally, we can see that the stacking classifier objects are significantly better in terms of
these metrics as expected and explained when viewing the structure and operation of the
StackingClassifier object in the Methodology section, where it is an ensemble model that
combines the outputs of multiple strong ML models and discovers the most effective orientation
using its meta-learning algorithm to deliver a model that is capable of achieving even higher
accuracies. Thus, acting as a hybrid model, combining the strengths of different ML models to
form one strong model. Moreover, it is believed that the improved prediction accuracy is
achieved by placing RF as the final estimator as it is a simple ensemble model (as previously
discussed during the Methodology and Literature Review sections) that complements the
structure of the stacking classifier. Other notable models include the XGB, SVC, EXT, RF, and
ANN, KNN models, which performed very well and had really good prediction accuracy (almost
all being > 0.8). Here, we can see that after performing hyperparameter tuning to obtain the
optimal model parameter values, these scores were significantly enhanced. The effect of
choosing the optimal preprocessing techniques, for instance, one-hot-encoding over numerical
encoding, KNN Imputer over other simple imputation techniques (other tested include
replacement with mean, mode, median values), implementation of oversampling with SMOTE,
MinMaxScaler over other scaling techniques (other tested include StandardScaler,
MaxAbsScaler, RobustScaler), was seen to significantly improve the final prediction accuracies
and other evaluation metric scores as well. Models that did not perform well in this respect are
the LR, NB and KMC models, with the latter achieving significantly low prediction accuracies.
This is because of the nature of the KMC model being an unsupervised model that does not take
advantage of the information of target values that are available in the dataset to train its model,
instead finding patterns in the dataset with the input attributes to make predictions or classify
records. For the NB and DT models, they are believed to have comparatively lower scores
because they are simple machine learning algorithms either based on computing the probability
based on Bayes principle or by performing simple regression for classification purposes.

Comparing MSE, RMSE, MAE, and Misclassification Rate
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In terms of the lowest MSE, RMSE, MAE, misclassification rate, in ascending order, are the
StackingClassifier with XGB, EXT, RF, KNN, and MLP models. Here, the reasoning behind
these scores are the same as for the prediction accuracies, where StackingClassifier objects are
hybrid ensemble models combining the strength of its base models with a designated final
estimator. Although the StackingClassifier with RF final estimator is not the best model in this
respect, the difference is very minimal (± 0.03) with the StackingClassifier with XGB and EXT
models. The StackingClassifier with RF final estimator is still the chosen model, as its prediction
accuracy is significantly better (0.868) (± 0.04 difference) and its testing time is significantly low
(being 0.02s faster/lesser time taken), which is significantly important considering the model will
be deployed into the production environment and its crucial for it to process these inputs in a low
amount of time and return accurate predictions. Additionally, the MLP model is also seen to have
low errors, owing to its fundamental structure of iteratively improving and reducing the model
errors at every epoch or training run by optimising the weights and thresholds at the neurons or
perceptrons. Similar to before, the worst-performing models in this respect are again the LR, NB
and KMC, with MSE and RMSE more than 1 and significantly high MAE and misclassification
rate. This is because, as mentioned before LR and NB are less complex models compared to the
other more performant models, and KMC does not fit this problem domain which requires more
supervised learning models.

Comparing Training Time
In terms of training time, the fastest models or the models requiring the least time in ascending
order are the normal KNN, NB, DT, LR, and SVC models. Similarly, the models requiring the
most training time are the StackingClassfier models in descending order are StackingClassifier
with MLP, EXT, XGB, RF, and DT. As mentioned earlier, the StackingClassifiers are hybrid
ensemble models containing multiple base models/estimators, thus as each of the underlying
classifiers need to be fitted and trained as well as the meta-learning algorithm to determine the
best orientation or combination, this can extend the time taken to train the model. However, this
training is only performed once as the model is fitted with the training dataset, thus, it will likely
not be an issue in a production or real-world environment that relies more on the testing time. In
the web application, a fitted model with the computed weights and parameter values will be used
to inputs will be entered and passed through the model to compute the output, thus only relying
on the testing time or speed at which the model makes predictions. Therefore, in this respect, it is
seen that the KNN, NV, DT, and LR models require the least training time as they are simple,
non-complex non-ensemble supervised learning methods. Therefore, models such as the EXT,
RF, and XGB require more time for training in comparison, as they are ensemble models or a
combination of these simple models, primarily the decision trees. The ANN model also requires
significant training time, considering its structure of requiring numerous epochs or training runs
to train the model and optimise its weights and threshold parameter values, and this value
increases with the structure of the neural network, where if it contains more hidden layers and
neurons in those layers, this increases the complexity and the time taken to fit all the neurons and
the overall model. Thus, this value was optimised, and (27,27,27) was found to be a perfect
balance, giving an improved and stable performance or accuracies while reducing the complexity
or time taken for training the model.

Comparing Testing Time
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In terms of testing time, the fastest models or the models requiring least time in ascending order
are the normal LR (0.0000913s), DT (0.000143s), NB (0.000270s), K-Means (0.000468s), ANN
(0.00149s). This is as expected and, as mentioned previously, where these models are typically of
low complexity. As for the ANN model, once it is fitted and the optimal weights and threshold
values have been computed for its neurons, the numerical values are available, and the process of
computing or making predictions and classifications is akin to involving simple multiplication
calculations to compute the output. Similarly, the models requiring the most testing time are the
StackingClassfier models in descending order are StackingClassifier with MLP (0.112s), SVC
(0.100s), EXT (0.094s), XGB (0.070s), and RF (0.052s) owing to its complex structure and as
inputs need to be passed through each of the individual base estimators to produce a final
highly-accurate classification or prediction. Nevertheless, these testing times are still around and
less than 0.1s, so in the web application, real-world usage or production environment, this time is
highly unnoticeable to the end-user, and as it is a value close to regular page rendering times
which will mask it.

Thus, the StackingClassifier with RF as final estimator is still kept as the chosen model, because
it has a significantly low testing time among the StackingClassifier models (0.052s), while taking
advantage of its significant prediction accuracy and minimal error rate.

Feature Importance
After choosing StackingClassifier with RF as the final estimator as the best performing model,
its feature importance or the contribution score of each feature to the model prediction is
identified and visualised. Thus, the following figure and graph show the score computed of the
feature importance and the visualisation of these scores in a bar chart to observe the differences
better.
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Figure 37: Output of feature importance score of dataset attributes in the terminal
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Figure 38: Visualisation of feature importance score of the dataset attributes in a bar chart

From the above results and plot, it can be seen that the features that have the most effect on the
model are the oldpeak (ST depression induced), age, thalch (Maximum heart rate achieved), ca
(Number of major vessels), cholesterol, and trestbps (Resting blood pressure). These are
numerical attributes and so they are not split into multiple sub-attributes like with the categorical
attributes as per the action of the one-hot-encoding during the data cleaning stage. Thus, this is
why these attributes have particularly high feature importance. Rightly so, we can see that the
oldpeak, age and heart rate of an individual are key factors for heart disease presence in an
individual, especially oldpeak as it directly corresponds to the ECG results, which are a key
measure when dealing with heart disease detection.

Furthermore, for the categorical attributes, chest pain type, exercise-induced angina, slope of ST
segment, and rest ECG are key contributors, especially considering chest pain type and angina
are common symptoms that are monitored, and the latter are part of the ECG test data, a common
measure for heart disease presence. Gender is seen to be among the lowest contributors, which is
fairly true, as previous literature review has shown that one's gender does not strongly impact or
polarise their level of heart disease, where other parameters would need to placed more priority
to be observed.

Comparing With Literature Sources
From comparing the performance metric results obtained with the ones presented by the other
literature sources (as seen in the Literature Review section), there are a few things that can be
noted. Firstly, our best-performing models are able to outperform the best-performing models
developed by [37], [7], [38], and [40]. This is owing to the development or usage of advanced
ML models or techniques such as the StackingClassifier, ExtraTrees, and XGBoost models that
are not employed by the other sources. Additionally, implementing hyperparameter optimisation
to find the optimal parameter values to maximise the prediction accuracy of the ML models
significantly improved our ML models, and is not practised in a large majority of the other
literature sources.

Nonetheless, sources such as [9], [36] and [39] were seen to obtain better performance metric
scores. For sources [9] and [36], the best models are their SVC (97.35%) and RF models
(94.96%) respectively, which had one of the highest accuracies in our implementation of those
models as well. However, their significant improvement in those models is possibly due to them
using a subset of the UCI dataset, where our dataset used was a combination of 4 datasets. Thus,
their dataset had lesser records to train, and so in conjunction, lesser records to validate or test
with, potentially giving way to lesser errors in the dataset to rectify and a higher percentage of
accurate classifications. Additionally, they each used a different set of numerical only attributes.
Therefore, this could have played a role as the ML algorithms can learn better from the dataset to
improve its fitting and, in conjunction, its prediction. So, in our future works or implementation
of our ML models, we would have to test training and testing the model with only numerical
attribute values. For source [39], their improvement came from implementing the CNN model,
which gave them a prediction accuracy of 94.78%. This algorithm was left out of our
comparative study to focus on the existing 11 different algorithms, to understand their structure
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and optimise those models better. However, it is surely a model that will be placed as part of
future works to be designed and implemented with our obtained datasets.

4.2 Web Application Results and Discussion
This section describes the results of testing that was performed on the web app after its
development had been completed. Overall, it is important to ensure that the web system with the
integrated ML component is thoroughly and systematically tested to ensure the initially
mentioned goals and requirements have been fulfilled and the system is functional with little to
no errors in its operations or functionalities, before the system is cleared to be completely
deployed and utilised by the end-users. This is to prevent users from encountering errors with the
website and to ensure the user experience of the website is conserved. From the testing
performed, if any errors are found in the developed program, revert back to the development
stage to proceed with identifying and pinpointing the error and its source, and subsequently,
efforts were made to resolve the issue. Hence, this step was interleaved or conducted along with
the development phase, so if any defects, faults, or errors are identified with the developed
system, reversion to the implementation stage is possible to debug and resolve the errors.

Following the project's implementation, two forms of testing were performed on the web app,
namely, unit testing and integration testing were carried out. These tests were performed on the
locally-hosted web application, before the deployment tasks and were hosted on AWS. After
that, these testings were performed again on the hosted and deployed web application (at
https://heartassist.net/), and the results in this report and in the Appendix are from this final
round of testing and validating the hosted web application as it is the system that the end-user
will be utilising and interacting with.

Unit Testing
Unit testing is performed to ensure that every unit of the system, this includes components of a
web page, will function and are rendered or displayed correctly as expected according to
requirements. It is a specific form of testing where individual components of the system are
tested separately to verify they are working correctly and fulfilling the initial expectations and
design.

For this unit testing that was performed, there are 7 unit test modules that were used with a
combined total of 52 unit test cases used to evaluate the web app system components. From
performing the unit testing, it was found that all 52 test cases were passed successfully. The
following table summarises the results of the unit testing that was performed. For more detailed
information regarding the test cases, including how the testing was performed (scenario), the
specific steps, prerequisites, test data used, expected result, and status or outcome of testing, the
unit test cases are available in Appendix B.

Table IV
Summary of Unit Testing

Unit Test Module ID Unit Test Module
Name

Number of unit test
cases in the module

Number of passed
unit test cases in the

module
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UT-TC-001 Home/Heart Disease
Risk Calculator Form

Page

7 7

UT-TC-002 Registration Pages 6 6

UT-TC-003 Login Page 11 11

UT-TC-004 Patient Account Page 9 9

UT-TC-005 Doctor Account Page 8 8

UT-TC-006 Admin Account Page 5 5

UT-TC-007 Edit Profile/Change
Password Page

6 6

Total 52 52

For consistency these unit tests were also performed on different web browsers, namely Google
Chrome (chromium), Mozilla Firefox (firefox), and Safari (webkit). In all these major browsers,
the results of the testing were the same, where all 52 test cases were passed successfully.
Additionally, to ensure responsiveness, and to validate the web application components are
functional and rendered correctly on different viewports, the web application was tested on
desktop, tablet and mobile viewports (360×640, 1366×768, 1920×1080), this was achieved with
the help of Google Chrome DevTools. Similarly, the test cases were passed on these different
viewports.

Overall, these unit test results show that all the aforementioned functionalities and features as per
the requirements plan were implemented correctly and are functional. Additionally, the design,
although does not follow the exact designs as in the original system prototype designs (3.7)
created using Adobe XD, the website components are still rendered correctly, clearly, as desired.
For instance, the web application theme was changed to follow a light blue colour scheme,
owing to personal preference as it was found to be a more calming and professional colour
scheme.

Integration Testing
Integration testing validates the communication or connection between the frontend of the web
app system to its backend, including the database (MongoDB), by ensuring that the database data
is modified and updated correctly and the changes are reflected in the web app system when the
system sends a request. Thus, this was verified by using the MongoDB Compass tool to observe
whether changes

For this integration testing that was performed, there are 5 integration test modules that were
used with a combined total of 15 integration test cases used to evaluate the web app system
components and functionalities. From performing the integration testing, it was found that all 15
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integration test cases were passed successfully. The following table summarises the results of the
integration testing that was performed. For more detailed information regarding the test cases,
including how the testing was performed (scenario), the specific steps, prerequisites, test data
used, expected result, and status or outcome of testing, the integration test cases are available in
Appendix C.

Table V
Summary of Integration Testing

Integration Test
Module ID

Integration Test
Module Name

Number of
integration test cases

in the module

Number of passed
integration test cases

in the module

IT-TC-001   Registration Pages
and System

2 2

IT-TC-002 Login Page 3 3

IT-TC-003 Home and Account
Page Functionalities

4 4

IT-TC-004 Admin Dashboard
Functionalities

4 4

IT-TC-005 Edit Profile/Change
Password Page

2 2

Total 15 15

Similar to before, to ensure consistency in functionality these unit tests were also performed on
different web browsers, namely Google Chrome (chromium), Mozilla Firefox (firefox), and
Safari (webkit). In all these major browsers the results of the testing were the same, where all 15
test cases were passed successfully. Additionally, to ensure responsiveness, to validate the web
application components are functional on different viewports, the web application was tested on
desktop, tablet and mobile viewports (360×640, 1366×768, 1920×1080), this was achieved with
the help of Google Chrome DevTools. Similarly, the test cases were passed on these different
viewports.  Similarly, the test cases were passed on these different viewports.

These integration tests show that these web app functionalities were implemented correctly to be
able to initiate the commands to communicate with the backend and the MongoDB database to
make read and write requests quickly and correctly following requirements and according to the
designed UML class diagram. Therefore, in the database, the right tables have been created
according to the UML class diagram plans (User, Patient, Doctor, Admin,
HeartDiseasePrediction), and the functions in the views.py file perform correctly to update these
tables correctly according to what the user wants to achieve.
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5. Conclusion
This section will summarise or draw an ending to this project, to summarise the findings, the
significance of performing this project, its limitations and challenges and future works to
improve the project.

Summary of Project
One of the biggest issues facing modern society is heart disease and cardiovascular diseases,
taking millions of lives each year, according to the World Health Organisation, WHO [1]. Even
in our country, Malaysia, it is especially prevalent. However, at an early stage, it is a disease that
can be prevented from worsening through the right medicinal assistance. However, the challenge
remains where manually calculating the likelihood of developing heart disease based on risk
factors is challenging. Nevertheless, with the aid of machine learning, we can quickly determine
whether or not the individual has heart disease. The quick and precise classification of heart
disease will help doctors treat patients correctly and potentially save their lives. Prior to the
development of machine learning technology, healthcare institutions followed a protocol using
rule-based techniques that involved asking a series of questions about the variables that together
indicate the presence or absence of HD. This can especially be personnel-intensive, having to sift
through a large amount of data available in the ECG reports and other medically-significant data.

Overall, this project was performed to contribute to the existing development of heart disease
prediction systems through the incorporation of advanced machine learning techniques such as
neural networks as well as testing along with a well-curated dataset and introducing hybrid data
mining models to further combine other patient medical information that might be statistically
significant and provide improved diagnosis and treatment. Therefore, this system’s primary focus
was to be designed as a tool to help doctors and medical professionals’ decision-making process
when dealing with the numerous data available when diagnosing and treating heart disease cases.

The objectives of this project included, designing, implementing and validating different ML
algorithms (a full list of implemented algorithms can be seen in section 3.4.5) performance on
the UCI heart disease dataset that was chosen. Parameters including dataset features, data
preprocessing techniques, split ratio, and model hyperparameter values, were also tuned to find
the optimal configurations that produce the best-performing models. The way in which a model
can be determined as the best-performing model, was further explored in section 3.4.6, using
prediction accuracy scores, error rates, and complexity indications (e.g., training and testing
time). This facilitated the model selection process where the chosen ML model to be integrated
with the web application was done following the principle of parsimony, where the
best-performing model with the least complexity was chosen. This was found to be the
StackingClassifier model with the Random Forest model, with the best prediction accuracy
scores (86.9%), minimal error rates (0.311 mean square error), and acceptable testing times
(0.0522s) for web application deployment. Overall, from viewing the results of the ML
implementation process, it can be said that this objective was successfully accomplished, as we
have validated our initial assumptions of how these said parameters have an impact on the ML
model performance, especially the role of hyperparameter optimisation in finding the optimal
parameter values to maximise performance. Additionally, we were able to identify, design, and
implement multiple ML models that were performant in heart disease classification (9 models
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with more than 80% accuracy), but were able to pinpoint the said StackingClassifier model to be
the best performing in terms of accuracy, error rate and complexity.

The next objective was to develop a production-ready web application that would house this
chosen ML model, allowing for users to submit their physiological data relating to heart disease
classification in a form, that will be inputted into the ML model, that will process these inputs
and output a classification (the level of heart disease). Thus, this web application was designed
using the Django Python Framework, owing to the ML model being implemented in the Python
Programming Language and providing a smooth integration between the frontend and backend
components. How the ML algorithm was deployed in this web application format (using
pickling) is further explained in the web application implementation section (3.9). Overall, in
terms of the web application implementation, all the aforementioned requirements and system
functionalities part of the requirements plan, were successfully implemented following the
results of the unit and integration testing that were performed. Additionally, the web application
can be easily accessible using a web browser, as it has been deployed and hosted on the cloud
platform AWS with a domain name, https://heartassist.net/, pointing to it.

Limitations and Future Work
Nonetheless, for now, at its first iteration, there exists limitations during the implementation of
this project, or out of scope items, several boundaries or functionalities that are not included or
covered in this entire project. Therefore, corresponding future works are also proposed along
with it. So, these limitations and future work include:

● The algorithm only predicts the presence and level of heart disease, but is not able to
identify the exact type of heart disease that a patient is experiencing. For this, image
processing and computer vision can be utilised to classify and determine the exact type of
heart disease a patient possesses.

● The dataset used for this project is limited (920 records) and not representative of patients
in Malaysia at its current iteration as we are utilising the limited resources that are
available open-source as well as to avoid an excessively large dataset which will
necessitate significant storage, computation and time for training requirements. The low
number of attributes selected, 16 attributes, is to reduce the complexity of the designed
algorithm and as they were the features that best correlated with the target attribute.
Nonetheless, as part of future work, a dataset with more features would be ideal for
studying the effect of different features’ importance or contribution to heart disease
classification and prediction. Also, the dataset we are currently using is a combination of
4 datasets based on records of participants from Budapest, Hungary, Zurich and Basel,
Switzerland, and Cleveland, USA, so if we are to deploy it for use in our native country,
Malaysia, the location factor in heart disease prediction is not able to be studied. Overall,
this may further reduce the system’s applicability for commercial or real-world usage.
Thus, in future works, we aim to obtain records or datasets from local participants,
whether it is through surveys or collaborations with relevant medical and educational
institutions.

● Additionally, the final system and overall project are solely intended to be used for
educational and research reasons to comprehend the applicability, advantages and
disadvantages of ML models, and the attributes that are crucial for this problem domain
of heart disease prediction/classification. Therefore, it will undoubtedly need clearances
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and approvals from the appropriate authorities before it can be used to make final,
conclusive decisions or for real-world commercial scenarios, especially given that this
research is focused on the crucial topic of human health. Although the primary goal of
this system is to supplement the decision-making process of a doctor, cardiologist, or
healthcare professional by analysing vast amounts of data to identify patterns and support
the diagnosis. Therefore, the role of a doctor, cardiologist, or healthcare professional is
still prominent and essential to reaching a final conclusion regarding a patient's heart
health. As a result, this study aims to improve our understanding of the similarities,
shortcomings, and potential uses of various ML models.

● For the ANN models implemented, there is a limitation in that not all the topologies or
possible structures or the hidden layer sizes have been tested. The hidden layers are
capped at 30 neurons in each layer up to 3 layers. So, only when the first layer has
reached 30 neurons, will the next layer be filled up with neurons. Therefore hidden layer
combinations or topologies, such as (25, 24, 23), have not been tested. This is to simplify
the Test 2 (Number of Hidden Layers and Neurons Test) as well as for lower
computational time, as testing a different number of neurons for every layer would lead to
more complexity in the test sequence. Therefore, to test more topologies, an evolutionary
neural network can be designed and developed. It is a hybrid model combining the
strengths of neural networks and evolutionary algorithm (genetic algorithm, GA). So, it
uses GA to find the optimal values for the weights and topology of the neural network
model. For this, the neural network weights and topology are encoded as a chromosome
for the GA, the fitness function is defined as the performance of the neural network,
minimising the sum of squared errors (SSA). And so, it generates multiple ANNs with
different weights and topologies and GA will optimise these chromosomes, by means of
crossover and mutation for a number of epochs or training runs that iteratively improve
the weights and topologies that maximise the model performance as computed by the
fitness function. This evolutionary neural network hybrid model is especially applicable
to improve the existing ANN models, as the current models are feedforward in structure,
and the direct encoding to chromosomes performed can only be applied on feedforward
networks. Overall, the exploration of this hybrid model could pose performance
improvements over the existing designed ANN model that could lead to the improved
StackingClassifier model in conjunction. Thus, improving the model performances in
general.
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7. Appendices

Appendix A: Results of ML model validation and evaluation metrics

Split Ratio
(Train: Test)

Algorithm Parameters Accura
cy

Precisi
on

Recall F1-Sco
re

MSE RMSE MAE Miscla
ssificat

ion
Rate

MCC Trainin
g Time

(s)

Testing
Time (s)

Total Time
(s)

50:50 SVC kernel: 'rbf'
C: 20
gamma: 1

0.76361
9

0.7636
19

0.7636
19

0.7636
19

0.5457
2

0.7387
29

0.3239
3

0.2363
81

0.7058
83

0.0543
61

0.045641 0.100002

KNN n_neighbors:
3
weights:
‘distance’

0.71303
5

0.7130
35

0.7130
35

0.7130
35

0.8939
69

0.9454
99

0.4464
98

0.2869
65

0.6452
92

0.0009
59

0.736005 0.736964

NB var_smoothin
g:
0.4328761281
0830584

0.45428 0.4542
8

0.4542
8

0.4542
8

1.9036
96

1.3797
45

0.9231
52

0.5457
2

0.3329
64

0.0009
71

0.000666 0.001637

DT max_depth:
None
criterion: 'gini'

0.61965 0.6196
5

0.6196
5

0.6196
5

1.1556
42

1.0750
08

0.6011
67

0.3803
5

0.5258
86

0.0061
55

0.000217 0.006372

XGB n_estimators:
100
max_depth:
None
subsample:
0.75

0.76556
4

0.7655
64

0.7655
64

0.7655
64

0.6721
79

0.8198
65

0.3570
04

0.2344
36

0.7088
09

3.1579
11

0.003232 3.161143

RF n_estimators:
200

0.76556
4

0.7655
64

0.7655
64

0.7655
64

0.6225
68

0.7890
3

0.3424
12

0.2344
36

0.7088
05

0.2507
75

0.023087 0.273862
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max_features:
'auto'
max_depth:
None
criterion: 'gini'

EXT n_estimators:
200
max_features:
log2
max_depth:
None
criterion: 'gini'

0.76361
9

0.7636
19

0.7636
19

0.7636
19

0.6118
68

0.7822
2

0.3414
4

0.2363
81

0.7073
55

0.1664
11

0.026182 0.192593

KMC n_clusters:
200
max_iter: 150
algorithm:
‘lloyd’

0.00291
8

0.0029
18

0.0029
18

0.0029
18

8997.8
73

94.857
12

77.100
19

0.9970
82

-0.011
19

0.2049
25

0.001062 0.205987

LR C: 1000.0
solver: 'lbfgs'

0.5 0.5 0.5 0.5 1.3638
13

1.1678
24

0.7412
45

0.5 0.3766
45

0.0148
04

0.000107 0.014911

ANN activation:
‘tanh’
solver: ‘adam’
hidden_layer:
(27, 27, 27)
max_iteration:
723

0.72665
4

0.7266
54

0.7266
54

0.7266
54

0.7762
65

0.8810
59

0.4143
97

0.2733
46

0.6595
28

1.3251
05

0.001062 1.326167

StackingClass
ifier with

SVC Final
Estimator

final_estimato
r: svc_model

0.72081
7

0.7208
17

0.7208
17

0.7208
17

0.7276
26

0.8530
1

0.4105
06

0.2791
83

0.6534
83

19.619
96

0.166609 19.78657
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StackingClass
ifier with

KNN Final
Estimator

final_estimato
r: knn_model

0.72859
9

0.7285
99

0.7285
99

0.7285
99

0.6916
34

0.8316
46

0.3939
69

0.2714
01

0.6631
55

25.695
68

0.13461 25.83029

StackingClass
ifier with DT

Final
Estimator

final_estimato
r: dt_model

0.71984
4

0.7198
44

0.7198
44

0.7198
44

0.6857
98

0.8281
29

0.3959
14

0.2801
56

0.6503
26

22.186
81

0.110635 22.29744

StackingClass
ifier with

XGB Final
Estimator

final_estimato
r: xgb_model

0.79280
2

0.7928
02

0.7928
02

0.7928
02

0.5019
46

0.7084
81

0.2937
74

0.2071
98

0.7422
78

23.823
19

0.122879 23.94607

StackingClass
ifier with RF

Final
Estimator

final_estimato
r: rf_model

0.79863
8

0.7986
38

0.7986
38

0.7986
38

0.4601
17

0.6783
19

0.2772
37

0.2013
62

0.7490
15

22.413
06

0.130151 22.54321

StackingClass
ifier with

EXT Final
Estimator

final_estimato
r” ext_model

0.78404
7

0.7840
47

0.7840
47

0.7840
47

0.4883
27

0.6988
04

0.2976
65

0.2159
53

0.7308
8

22.369
48

0.131988 22.50147

StackingClass
ifier with

MLP Final
estimator

final_estimato
r: mlp_model

0.73540
9

0.7354
09

0.7354
09

0.7354
09

0.6634
24

0.8145
09

0.3813
23

0.2645
91

0.6708
2

22.910
71

0.189039 23.09975

60:40 SVC kernel: 'rbf'
C: 20
gamma: 1

0.79197
1

0.7919
71

0.7919
71

0.7919
71

0.5036
5

0.7096
83

0.2895
38

0.2080
29

0.7413
64

0.0682
63

0.041172 0.109435

KNN n_neighbors:
3

0.76277
4

0.7627
74

0.7627
74

0.7627
74

0.6861
31

0.8283
3

0.3576
64

0.2372
26

0.7065 0.0001
56

0.003658 0.003814
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weights:
‘distance’

NB var_smoothin
g:
0.4328761281
0830584

0.46958
6

0.4695
86

0.4695
86

0.4695
86

1.8965
94

1.3771
69

0.9087
59

0.5304
14

0.3555
36

0.0005
89

0.000346 0.000935

DT max_depth:
None
criterion: 'gini'

0.64111
9

0.6411
19

0.6411
19

0.6411
19

1.0109
49

1.0054
6

0.5437
96

0.3588
81

0.5513
06

0.0068
77

0.000236 0.007113

XGB n_estimators:
100
max_depth:
None
subsample:
0.75

0.79927 0.7992
7

0.7992
7

0.7992
7

0.5036
5

0.7096
83

0.2871
05

0.2007
3

0.7515
17

1.4979
02

0.003198 1.5011

RF n_estimators:
200
max_features:
'auto'
max_depth:
None
criterion: 'gini'

0.78223
8

0.7822
38

0.7822
38

0.7822
38

0.5717
76

0.7561
59

0.3163
02

0.2177
62

0.7305
07

0.2859
68

0.020161 0.306129

EXT n_estimators:
200
max_features:
log2
max_depth:
None
criterion: 'gini'

0.79805
4

0.7980
54

0.7980
54

0.7980
54

0.4975
67

0.7053
84

0.2834
55

0.2019
46

0.7490
12

0.1886
12

0.023047 0.211659
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KMC n_clusters:
200
max_iter: 150
algorithm:
‘lloyd’

0.00365 0.0036
5

0.0036
5

0.0036
5

10067.
01

100.33
45

82.187
35

0.9963
5

-0.007
19

0.2294
58

0.001041 0.230499

LR C: 1000.0
solver: 'lbfgs'

0.53406
3

0.5340
63

0.5340
63

0.5340
63

1.3394
16

1.1573
31

0.7068
13

0.4659
37

0.4204
76

0.0225
63

0.000103 0.022666

ANN activation:
‘tanh’
solver: ‘adam’
hidden_layer:
(27, 27, 27)
max_iteration:
723

0.75425
8

0.7542
58

0.7542
58

0.7542
58

0.5486
62

0.7407
17

0.3345
5

0.2457
42

0.6938
39

1.5748
62

0.00145 1.576312

StackingClass
ifier with

SVC Final
Estimator

final_estimato
r: svc_model

0.78345
5

0.7834
55

0.7834
55

0.7834
55

0.5401
46

0.7349
46

0.3065
69

0.2165
45

0.7297
55

24.977
85

0.160725 25.13858

StackingClass
ifier with

KNN Final
Estimator

final_estimato
r: knn_model

0.79562 0.7956
2

0.7956
2

0.7956
2

0.4744
53

0.6888
05

0.2798
05

0.2043
8

0.7451
59

24.582
21

0.117437 24.69965

StackingClass
ifier with DT

Final
Estimator

final_estimato
r: dt_model

0.75912
4

0.7591
24

0.7591
24

0.7591
24

0.5364
96

0.7324
59

0.3248
18

0.2408
76

0.6988
33

24.924
13

0.115252 25.03938

StackingClass
ifier with

XGB Final
Estimator

final_estimato
r: xgb_model

0.82481
8

0.8248
18

0.8248
18

0.8248
18

0.4330
9

0.6580
96

0.2481
75

0.1751
82

0.7811
74

31.121
86

0.109678 31.23154
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StackingClass
ifier with RF

Final
Estimator

final_estimato
r: rf_model

0.83698
3

0.8369
83

0.8369
83

0.8369
83

0.3576
64

0.5980
5

0.2189
78

0.1630
17

0.7964
06

26.609
64

0.163843 26.77349

StackingClass
ifier with

EXT Final
Estimator

final_estimato
r” ext_model

0.83333
3

0.8333
33

0.8333
33

0.8333
33

0.3600
97

0.6000
81

0.2214
11

0.1666
67

0.7929
83

24.479
2

0.126261 24.60546

StackingClass
ifier with

MLP Final
estimator

final_estimato
r: mlp_model

0.78832
1

0.7883
21

0.7883
21

0.7883
21

0.5583
94

0.7472
58

0.3077
86

0.2116
79

0.7355
01

30.267
61

0.11429 30.3819

70:30 SVC kernel: 'rbf'
C: 20
gamma: 1

0.79416
5

0.7941
65

0.7941
65

0.7941
65

0.5235
01

0.7235
34

0.2965
96

0.2058
35

0.7437
96

0.0878
71

0.034395 0.122266

KNN n_neighbors:
3
weights:
‘distance’

0.74392
2

0.7439
22

0.7439
22

0.7439
22

0.7844
41

0.8856
87

0.4051
86

0.2560
78

0.6816
07

0.0003
18

0.012193 0.012511

NB var_smoothin
g:
0.4328761281
0830584

0.47487
8

0.4748
78

0.4748
78

0.4748
78

1.7163
7

1.3101
03

0.8541
33

0.5251
22

0.3539
51

0.0006
02

0.000316 0.000918

DT max_depth:
None
criterion: 'gini'

0.66936
8

0.6693
68

0.6693
68

0.6693
68

0.8962
72

0.9467
17

0.4878
44

0.3306
32

0.5869
84

0.0084
79

0.000199 0.008678

XGB n_estimators:
100

0.79092
4

0.7909
24

0.7909
24

0.7909
24

0.5737
44

0.7574
59

0.3144
25

0.2090
76

0.7401
4

2.9962
62

0.003676 2.999938
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max_depth:
None
subsample:
0.75

RF n_estimators:
200
max_features:
'auto'
max_depth:
None
criterion: 'gini'

0.78282 0.7828
2

0.7828
2

0.7828
2

0.6061
59

0.7785
62

0.3273
91

0.2171
8

0.7312
34

0.3322
96

0.017522 0.349818

EXT n_estimators:
200
max_features:
log2
max_depth:
None
criterion: 'gini'

0.80389 0.8038
9

0.8038
9

0.8038
9

0.5170
18

0.7190
4

0.2901
13

0.1961
1

0.7557
1

0.2134
33

0.0206 0.234033

KMC n_clusters:
200
max_iter: 150
algorithm:
‘lloyd’

0.03241
5

0.0324
15

0.0324
15

0.0324
15

8076.4
78

89.869
23

71.440
84

0.9675
85

0.0268
17

0.2670
47

0.000514 0.267561

LR C: 1000.0
solver: 'lbfgs'

0.57698
5

0.5769
85

0.5769
85

0.5769
85

1.2171
8

1.1032
59

0.6434
36

0.4230
15

0.4731
08

0.0218
33

9.01E-05 0.021923

ANN activation:
‘tanh’
solver: ‘adam’
hidden_layer:
(27, 27, 27)

0.76175 0.7617
5

0.7617
5

0.7617
5

0.7098
87

0.8425
48

0.3695
3

0.2382
5

0.7024
37

1.8077
81

0.041328 1.849109
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max_iteration:
723

StackingClass
ifier with

SVC Final
Estimator

final_estimato
r: svc_model

0.76499
2

0.7649
92

0.7649
92

0.7649
92

0.6094 0.7806
41

0.3468
4

0.2350
08

0.7074
02

25.073
98

0.123224 25.1972

StackingClass
ifier with

KNN Final
Estimator

final_estimato
r: knn_model

0.79740
7

0.7974
07

0.7974
07

0.7974
07

0.5089
14

0.7133
82

0.2884
93

0.2025
93

0.7474
4

27.829
19

0.09378 27.92297

StackingClass
ifier with DT

Final
Estimator

final_estimato
r: dt_model

0.73257
7

0.7325
77

0.7325
77

0.7325
77

0.7017
83

0.8377
25

0.3873
58

0.2674
23

0.6658
2

22.190
44

0.085077 22.27552

StackingClass
ifier with

XGB Final
Estimator

final_estimato
r: xgb_model

0.80875
2

0.8087
52

0.8087
52

0.8087
52

0.4100
49

0.6403
5

0.2576
99

0.1912
48

0.7617
56

23.269
32

0.10682 23.37614

StackingClass
ifier with RF

Final
Estimator

final_estimato
r: rf_model

0.82658 0.8265
8

0.8265
8

0.8265
8

0.4003
24

0.6327
12

0.2414
91

0.1734
2

0.7836
59

21.564
34

0.104018 21.66835

StackingClass
ifier with

EXT Final
Estimator

final_estimato
r” ext_model

0.83306
3

0.8330
63

0.8330
63

0.8330
63

0.4100
49

0.6403
5

0.2414
91

0.1669
37

0.7921
39

21.557
1

0.152033 21.70913

StackingClass
ifier with

final_estimato
r: mlp_model

0.75688
8

0.7568
88

0.7568
88

0.7568
88

0.6790
92

0.8240
71

0.3711
51

0.2431
12

0.6971
72

23.491
4

0.087115 23.57852
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MLP Final
estimator

80:20 SVC kernel: 'rbf'
C: 20
gamma: 1

0.84184
9

0.8418
49

0.8418
49

0.8418
49

0.4014
6

0.6336
09

0.2262
77

0.1581
51

0.8025
12

0.1045
7

0.026688 0.131258

KNN n_neighbors:
3
weights:
‘distance’

0.78345
5

0.7834
55

0.7834
55

0.7834
55

0.6058
39

0.7783
57

0.3236
01

0.2165
45

0.7299
99

0.0002
91

0.008914 0.009205

NB var_smoothin
g:
0.4328761281
0830584

0.47688
6

0.4768
86

0.4768
86

0.4768
86

1.7664
23

1.3290
69

0.8661
8

0.5231
14

0.3490
82

0.0005
75

0.00027 0.000845

DT max_depth:
None
criterion: 'gini'

0.68369
8

0.6836
98

0.6836
98

0.6836
98

0.9902
68

0.9951
22

0.4987
83

0.3163
02

0.6045
06

0.0137
66

0.000143 0.013909

XGB n_estimators:
100
max_depth:
None
subsample:
0.75

0.84428
2

0.8442
82

0.8442
82

0.8442
82

0.4014
6

0.6336
09

0.2262
77

0.1557
18

0.8061
21

1.8855
93

0.001801 1.887394

RF n_estimators:
200
max_features:
'auto'
max_depth:
None
criterion: 'gini'

0.83455 0.8345
5

0.8345
5

0.8345
5

0.5328
47

0.7299
64

0.2700
73

0.1654
5

0.7938
23

0.3723
34

0.013986 0.38632
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EXT n_estimators:
200
max_features:
log2
max_depth:
None
criterion: 'gini'

0.83698
3

0.8369
83

0.8369
83

0.8369
83

0.4768
86

0.6905
69

0.2530
41

0.1630
17

0.7965
23

0.2379
6

0.017439 0.255399

KMC n_clusters:
200
max_iter: 150
algorithm:
‘lloyd’

0 0 0 0 10320.
1

101.58
79

84.257
91

1 -0.008
49

0.7027
87

0.000468 0.703255

LR C: 1000.0
solver: 'lbfgs'

0.52798
1

0.5279
81

0.5279
81

0.5279
81

1.3479
32

1.1610
05

0.7153
28

0.4720
19

0.4094
29

0.0263
02

0.0000913 0.026393

ANN activation:
‘tanh’
solver: ‘adam’
hidden_layer:
(27, 27, 27)
max_iteration:
723

0.78588
8

0.7858
88

0.7858
88

0.7858
88

0.5182
48

0.7198
95

0.3090
02

0.2141
12

0.7324
52

2.0560
33

0.001495 2.057528

StackingClass
ifier with

SVC Final
Estimator

final_estimato
r: svc_model

0.79805
4

0.7980
54

0.7980
54

0.7980
54

0.4768
86

0.6905
69

0.2773
72

0.2019
46

0.7476
48

25.075
28

0.100786 25.17607

StackingClass
ifier with

KNN Final
Estimator

final_estimato
r: knn_model

0.82725
1

0.8272
51

0.8272
51

0.8272
51

0.3965
94

0.6297
57

0.2360
1

0.1727
49

0.7838
98

25.003
79

0.069261 25.07305
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StackingClass
ifier with DT

Final
Estimator

final_estimato
r: dt_model

0.79318
7

0.7931
87

0.7931
87

0.7931
87

0.4209
25

0.6487
87

0.2700
73

0.2068
13

0.7414
86

25.224
74

0.064495 25.28924

StackingClass
ifier with

XGB Final
Estimator

final_estimato
r: xgb_model

0.86618 0.8661
8

0.8661
8

0.8661
8

0.2822
38

0.5312
61

0.1800
49

0.1338
2

0.8325
77

26.868
86

0.070001 26.93886

StackingClass
ifier with RF

Final
Estimator

final_estimato
r: rf_model

0.86861
3

0.8686
13

0.8686
13

0.8686
13

0.3114
36

0.5580
64

0.1849
15

0.1313
87

0.8357
99

26.609
36

0.052212 26.69057

StackingClass
ifier with

EXT Final
Estimator

final_estimato
r” ext_model

0.86374
7

0.8637
47

0.8637
47

0.8637
47

0.3090
02

0.5558
8

0.1873
48

0.1362
53

0.8295
1

29.844
38

0.093992 29.93837

StackingClass
ifier with

MLP Final
estimator

final_estimato
r: mlp_model

0.81751
8

0.8175
18

0.8175
18

0.8175
18

0.3965
94

0.6297
57

0.2457
42

0.1824
82

0.7729
53

31.473
15

0.112023 31.58517

90:10 SVC kernel: 'rbf'
C: 20
gamma: 1

0.83922
3

0.8392
23

0.8392
23

0.8392
23

0.4077
67

0.6385
66

0.2135
92

0.1407
77

0.8241
06

0.1308
73

0.01549 0.146363

KNN n_neighbors:
3
weights:
‘distance’

0.76699 0.7669
9

0.7669
9

0.7669
9

0.6650
49

0.8155
05

0.3543
69

0.2330
1

0.7099
75

0.0002
47

0.00805 0.008297

NB var_smoothin
g:

0.47572
8

0.4757
28

0.4757
28

0.4757
28

1.7572
82

1.3256
25

0.8543
69

0.5242
72

0.3423
48

0.0006
46

0.000202 0.000848
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0.4328761281
0830584

DT max_depth:
None
criterion: 'gini'

0.71844
7

0.7184
47

0.7184
47

0.7184
47

0.8300
97

0.9110
97

0.4320
39

0.2815
53

0.6477
11

0.0111
12

0.000153 0.011265

XGB n_estimators:
100
max_depth:
None
subsample:
0.75

0.84893
2

0.8489
32

0.8489
32

0.8489
32

0.3592
23

0.5993
52

0.1941
75

0.1310
68

0.8356
03

2.9572
49

0.009753 2.967002

RF n_estimators:
200
max_features:
'auto'
max_depth:
None
criterion: 'gini'

0.82466 0.8246
6

0.8246
6

0.8246
6

0.4271
84

0.6535
94

0.2330
1

0.1553
4

0.8056
99

0.4126
2

0.010519 0.423139

EXT n_estimators:
200
max_features:
log2
max_depth:
None
criterion: 'gini'

0.82466 0.8246
6

0.8246
6

0.8246
6

0.4660
19

0.6826
56

0.2427
18

0.1553
4

0.8058
74

0.2570
78

0.013125 0.270203

KMC n_clusters:
200
max_iter: 150
algorithm:
‘lloyd’

0.00485
4

0.0048
54

0.0048
54

0.0048
54

8522.3
79

92.316
73

73.737
86

0.9951
46

-0.005
69

0.7407
37

0.00071 0.741447
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LR C: 1000.0
solver: 'lbfgs'

0.56310
7

0.5631
07

0.5631
07

0.5631
07

1.1407
77

1.0680
71

0.6456
31

0.4368
93

0.4520
35

0.0245
86

8.3E-05 0.024669

ANN activation:
‘tanh’
solver: ‘adam’
hidden_layer:
(27, 27, 27)
max_iteration:
723

0.82038
8

0.8203
88

0.8203
88

0.8203
88

0.4660
19

0.6826
56

0.2621
36

0.1796
12

0.7754
03

2.3093
23

0.00026 2.309583

StackingClass
ifier with

SVC Final
Estimator

final_estimato
r: svc_model

0.81495
1

0.8149
51

0.8149
51

0.8149
51

0.4854
37

0.6967
33

0.2524
27

0.1650
49

0.7933
6

27.112
5

0.061795 27.17429

StackingClass
ifier with

KNN Final
Estimator

final_estimato
r: knn_model

0.81553
4

0.8155
34

0.8155
34

0.8155
34

0.4805
83

0.6932
41

0.2669
9

0.1844
66

0.7689
79

27.293
63

0.049391 27.34302

StackingClass
ifier with DT

Final
Estimator

final_estimato
r: dt_model

0.79611
7

0.7961
17

0.7961
17

0.7961
17

0.5291
26

0.7274
11

0.2961
17

0.2038
83

0.7450
81

25.307
77

0.043911 25.35168

StackingClass
ifier with

XGB Final
Estimator

final_estimato
r: xgb_model

0.85637
86

0.8537
86

0.8537
86

0.8537
86

0.3058
25

0.5530
15

0.1796
12

0.1262
14

0.8419
24

27.007
91

0.047935 27.05584

StackingClass
ifier with RF

Final
Estimator

final_estimato
r: rf_model

0.85378
6

0.8537
86

0.8537
86

0.8537
86

0.3203
88

0.5660
29

0.1844
66

0.1262
14

0.8419
23

26.356
69

0.050248 26.40694
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StackingClass
ifier with

EXT Final
Estimator

final_estimato
r” ext_model

0.85864
1

0.8586
41

0.8586
41

0.8586
41

0.2864
08

0.5351
71

0.1699
03

0.1213
59

0.8479
96

25.889
51

0.051342 25.94085

StackingClass
ifier with

MLP Final
estimator

final_estimato
r: mlp_model

0.80524
3

0.8052
43

0.8052
43

0.8052
43

0.3592
23

0.5993
52

0.2330
1

0.1747
57

0.7820
63

28.808
7

0.045385 28.85409
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Appendix B: Unit Test Cases

Module: Home/Heart Disease Risk Calculator Form
Page

Test Module ID: UT-TC-001

Created by: Saurabh Varughese M. Kovoor Tested by: Saurabh Varughese M. Kovoor

Description

To test the home page with the heart disease risk calculator form and the results page after the form validation has passed and inputs
have been processed by the ML model.

Test
case
no.

Test scenario Steps Prerequisite Test data Expected result Status
(Pass/Fail)

1 Load home page and render
heart disease prediction
form.

1. Enter URL
https://heartassis
t.net/ in the
search engine.

N/A N/A Home page with
heart disease
prediction form
is loaded and
rendered
correctly.

Pass

2 Rendering text on page, and
their formatting including
the welcome text, notes text,
and footer content.

1. Enter URL
https://heartassis
t.net/ in the
search engine.
2. View the
welcome text,
notes text, and
footer content,
their
positioning,

N/A N/A Welcome text,
footer text
should be
centered with
the viewport
while the notes
section should
be left-aligned.
They should
follow

Pass
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sizing and
clarity.
3. Test at
different
viewport sizes
(360×640,
1366×768,
1920×1080),
using Google
Chrome
DevTools.

consistent sizing
as per the
Tailwind CSS
format. Ensure
these sizing and
formatting sizes
remain
consistent for
both mobile
(360×640),
tablet
(1366×768) and
desktop
viewports
(1920×1080)

3 Rendering form components
correctly (fields, labels,
tooltips)

1. Enter URL
https://heartassis
t.net/ in the
search engine.
2. View the form
labels, enter
values into
fields, hover
over tooltips.

N/A N/A Form label texts,
texts in fields,
and tooltips
texts should be
visible and
correctly
rendered.

Pass

4 Rendering correct and
corresponding error
messages for form
validation

1. Enter form
inputs,
preferably
incorrect values
or outside range
to trigger form
validation error

N/A N/A Correct and
corresponding
error message
should be
displayed under
field with
incorrect input

Pass
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message.
2. Test
submitting form
leaving out
certain fields.

entered. Error
message should
be rendered
correctly and
clearly.

5. Testing navigation bar
buttons (when not logged
in), main logo, register
button, log in button

1. Test clicking
buttons on the
navigation bar
(i.e., main logo,
register button,
log in button).

N/A N/A Buttons should
link to
corresponding
page, main logo
to homepage
(https://heartassi
st.net/), register
to register page
(https://heartassi
st.net/register/),
and log in to
login page
(https://heartassi
st.net/login/)

Pass

6. Testing form buttons, submit
and reset buttons. Testing
buttons after form
submission, including the
print, retry, register and log
in buttons.

1. Test clicking
buttons on the
form (i.e.,
submit, reset,
print, retry,
register and log
in buttons).

N/A N/A Buttons should
perform
corresponding
function submit
should submit
the form for
form validation
and processing
inputs, reset
should clear the
form inputs,
print should

Pass
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initiate browser
function to
request print of
web page, retry
should clear the
page and await
for inputs,
register should
point to
registration page
and log in
should point to
login page.

7. Rendering results of form
submission and input
processing correctly. Main
results are rendered and
displayed first correctly,
center aligned, with write
font sizing and color.
Second division should be a
collapsable container, when
clicked should expand to
contain additional
information or potential
factors that contributed to
the final result

1. Enter form
inputs, ensure
the values are
correct and pass
the form
validation.
Preferably form
inputs should be
following the
conditions in the
line 119-142 of
the views.py file
to trigger the
potential factors
messages to test
the
corresponding
messages being
rendered.

N/A N/A First results
section, should
display the level
of heart disease
based on the
form inputs.
Results should
be center
aligned, with the
first text bolded,
second text
bolded and large
primary colour
text, with
subtitle text
beneath. Second
division should
contain
collapsable

Pass
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2. View the
results section
below the form
inputs.

container, when
clicked should
expand and
when clicked
again should
hide the
contents.
Contents should
consist of
corresponding
values that are
triggered by the
form inputs
following the
conditions in the
line 119-142 of
the views.py
file.

Module: Registration Pages Test Module ID: UT-TC-002

Created by: Saurabh Varughese M. Kovoor Tested by: Saurabh Varughese M. Kovoor

Description

To test the registration page and the individual patient register and doctor register pages and their forms.

Test
case
no.

Test scenario Steps Prerequisite Test data Expected result Status
(Pass/Fail)
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8 Load Register page
(https://heartassist.net/regist
er/)

1. Enter URL
https://heartassis
t.net/register/ in
the search
engine.

OR

1. Press the
Register button
in the navigation
bar.

N/A N/A Register page is
loaded, shown
and rendered.

Pass

9 Load Patient Register page
(https://heartassist.net/patien
t_register/)

1. Enter URL
https://heartassis
t.net/patient_regi
ster/ in the
search engine.

OR

1. Press the I
AM A PATIENT
button.

N/A N/A Patient Register
page is loaded,
along with the
corresponding
registration form
shown and
rendered.

Pass

10 Load Patient Register page
(https://heartassist.net/doctor
_register/)

1. Enter URL
https://heartassis
t.net/doctor_regi
ster/ in the
search engine.

OR

N/A N/A Doctor Register
page is loaded,
along with the
corresponding
registration form
shown and
rendered.

Pass
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1. Press the I
AM A
DOCTOR
button.

11 Rendering correct and
corresponding error
messages for form
validation (repeated for both
registration forms)

1. Enter form
inputs,
preferably
incorrect values
or outside range
to trigger form
validation error
message. For
instance
incorrect
characters in
username, first
name, last name
phone number,
and email fields.
Also, leaving
out the “@”
symbol for the
email field and
not following a
typical email
address
structure.
Additionally
password and
correct password
not matching.
2. Test

N/A Incorrect
account
credentials for
sign up form for
corresponding
account.

Correct and
corresponding
error message
should be
displayed under
field with
incorrect input
entered. Error
message should
be rendered
correctly and
clearly.

Pass
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submitting form
leaving out
certain fields.

12 Submitting form without
ticking terms and conditions
checkbox (repeated for both
registration forms)

1. Enter form
inputs correctly,
passing form
validation
2. Submit form
without ticking
terms and
conditions
checkbox

N/A Correct account
credentials for
sign up form for
corresponding
account.

Correct and
corresponding
error message
should be
displayed under
field with
incorrect input
entered. Error
message should
be rendered
correctly and
clearly.

Pass

13 Testing submission of
registration forms and
correct redirection (repeated
for both registration forms)

1. Enter form
inputs correctly,
passing form
validation
2. Submit form
by clicking
CREATE button

N/A Correct account
credentials for
sign up form for
corresponding
account.

After entering
correct
registration form
inputs and
passing form
validation, user
should be
authenticated
and
automatically
logged in,
redirected to
home page.

Pass
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Module: Login Page Test Module ID: UT-TC-003

Created by: Saurabh Varughese M. Kovoor Tested by: Saurabh Varughese M. Kovoor

Description

To test the log in page and the login system for all users of the system (patient, doctor, and admin).

Test
case
no.

Test scenario Steps Prerequisite Test data Expected result Status
(Pass/Fail)

14 Load Login page
(https://heartassist.net/login/
)

1. Enter URL
https://heartassis
t.net/login/ in
the search
engine.

OR

1. Press the Log
In button in the
navigation bar.

N/A Any user
account
credentials
(username and
password) that
have been
previously
registered

Login page is
loaded, shown
and rendered

Pass

15 Rendering correct and
corresponding error
messages for form
validation. For instance,
incorrect username and
password combination or
leaving out field entries to
trigger error messages.

1. Enter and
submit incorrect
form inputs,
preferably
incorrect values
or outside range
or leaving fields
blank to trigger
form validation
error message.

N/A Incorrect
account
credentials for
login form.

Correct and
corresponding
error message
should be
displayed under
field with
incorrect input
entered. Error
message should
be rendered

Pass
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correctly and
clearly. For
example, error
“Invalid
username or
password”
should be
displayed

16 Patient account logging into
account

1. Enter correct
username and
password
2. Click “Log
In” button

A registered
patient account
should exist in
the database and
be previously
registered/
authenticated.

Test patient
account
username and
password

Patient account
will be
authorised and
logged into the
system and
redirected to the
home page.

Pass

17 Doctor account logging into
account

1. Enter correct
username and
password
2. Click “Log
In” button

A registered
doctor account
should exist in
the database and
be previously
registered/
authenticated.

Test doctor
account
username and
password

Doctor account
will be
authorised and
logged into the
system and
redirected to the
home page.

Pass

18 Admin account logging into
account

1. Enter correct
username and
password
2. Click “Log
In” button

A registered
admin account
should exist in
the database and
be previously
registered/
authenticated.

Test admin
account
username and
password

Admin account
will be
authorised and
logged into the
system and
redirected to the
home page.

Pass
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19 Account profile image and
name appearing on
navigation bar after logging
in.

1. Log into
account
2. View the
account name
and profile
image section of
the navigation
bar

A registered
patient account
should exist in
the database and
be previously
registered/
authenticated.

Test patient/
doctor/ admin
account
username and
password

User’s profile
picture and
username will
appear at the
navigation bar.

Pass

20 Doctor and patient account
try to access admin page

1. Visit
https://heartassis
t.net/admin/ url
after logging
into patient or
doctor account.

Logged into
patient or doctor
account

N/A Error message
will be shown
on admin page
that current
authenticated
user is not
authorised to
access the admin
dashboard and
they’ll have to
log in to a
different admin
account and
redirected to
admin login
page.

Pass

21 Admin account try to access
admin page

1. Visit
https://heartassis
t.net/admin/ url
after logging
into admin
account.

Logged into
admin account

N/A Admin page and
dashboard is
loaded, shown
and rendered

Pass
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22 Patient account logging out
of account

1. Press the Log
Out button in the
navigation bar.

N/A N/A Patient account
will be logged
out from the
system and
redirected to the
home page.

Pass

23 Doctor account logging out
of account

1. Press the Log
Out button in the
navigation bar.

N/A N/A Doctor account
will be logged
out from the
system and
redirected to the
home page.

Pass

24 Admin account logging out
of account

1. Press the Log
Out button in the
navigation bar.

N/A N/A Admin account
will be logged
out from the
system and
redirected to the
home page.

Pass

Module: Patient Account Page Test Module ID: UT-TC-004

Created by: Saurabh Varughese M. Kovoor Tested by: Saurabh Varughese M. Kovoor

Description

To test the account page for a patient account on the platform.

Test
case
no.

Test scenario Steps Prerequisite Test data Expected result Status
(Pass/Fail)
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25 Load Patient Account page
(https://heartassist.net/accou
nt/)

1. Log in to a
patient account.
2. Press the
account name in
the menu bar or
enter
https://heartassis
t.net/account/ in
the search
engine

User is logged
into a Patient
account.

N/A Patient account
page is loaded,
shown and
rendered

Pass

26 Rendering text on page, and
their formatting including
the patient account details
(first and last name and
account type), profile
picture, profile details,
contact details, and edit
profile and change password
buttons.

1. Visit the
account page
(https://heartassi
st.net/account/)
by clicking
username button
in navigation bar
after logging
into patient
account.
2. View the
aforementioned
text on page,
and their
formatting, their
positioning,
sizing and
clarity.
3. Test at
different
viewport sizes
(360×640,

User is logged
into a Patient
account.

N/A Text and
components of
the page should
be centered with
the viewport.
They should
follow
consistent sizing
as per the
Tailwind CSS
format. Ensure
these sizing and
formatting sizes
remain
consistent for
both mobile
(360×640),
tablet
(1366×768) and
desktop
viewports
(1920×1080)

Pass
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1366×768,
1920×1080),
using Google
Chrome
DevTools.

27 Rendering table of heart
disease risk trials.

1. Visit the
home page and
submit the heart
disease
prediction form
correctly and
obtaining a
result.
2. Visit the
account page
(https://heartassi
st.net/account/)
by clicking
username button
in navigation bar
after logging
into patient
account.
3. Check the
heart disease
risk trials table
for new entry.
Check every
column of the
row to ensure all
cells are

User is logged
into an account
(Patient or
Doctor).

Heart disease
prediction form
inputs.

Heart disease
risk trials table
is rendered and
displayed with
new row.
Columns of the
row has values,
so all cells are
populated with
same, consistent
and valid values.

Pass
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populated and
values are
consistent and
valid.

28 Rendering table of Connect
With a Doctor.

1. Visit the
account page
(https://heartassi
st.net/account/)
by clicking
username button
in navigation bar
after logging
into patient
account.
Preferably a
newly registered
account with no
connected
doctors.
2. View the
Connect with a
Doctor table.

User is logged
into a Patient
account

N/A Connect With a
Doctor table is
rendered and
displayed with
all the doctor
accounts that
have been
registered with
the platform.
Columns of the
row has values,
so all cells are
populated with
same, consistent
and valid values
corresponding to
that particular
doctors details.

Pass

29 Connecting with a Doctor
function

1. Visit the
account page
(https://heartassi
st.net/account/)
by clicking
username button
in navigation bar

User is logged
into a Patient
account

N/A The particular
doctor account
is added as a
connected
doctor for this
current account.
Account page is

Pass
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after logging
into patient
account.
Preferably a
newly registered
account with no
connected
doctors.
2. View the
Connect with a
Doctor table.
3. Press Connect
button for any
doctor account
or row.

reloaded, with
the Connect
With a Doctor
table no longer
visible and only
the Connected
Doctor table is
visible.

30 Rendering table of
Connected Doctor.

1. Visit the
account page
(https://heartassi
st.net/account/)
by clicking
username button
in navigation bar
after logging
into patient
account.
2. View the
Connected
Doctor table.

User is logged
into a Patient
account. Current
user has
previously
connected with a
doctor on the
platform.

N/A Connected
Doctor table is
rendered and
displayed with
the doctor
account that
have been
registered with
the platform and
added as the
patient’s
connected
doctor. Columns
of the row has
values, so all
cells are
populated with

Pass
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same, consistent
and valid values
corresponding to
that particular
doctors details.

31 Removing a Connected
Doctor function

1. Visit the
account page
(https://heartassi
st.net/account/)
by clicking
username button
in navigation bar
after logging
into patient
account.
2. View the
Connected
Doctor table.
3. Press Remove
button for the
connected
doctor account.

User is logged
into a Patient
account. Current
user has
previously
connected with a
doctor on the
platform.

N/A The particular
doctor account
is removed from
the current user
account as a
connected
doctor. Account
page is reloaded,
with the
Connected
Doctor table no
longer visible
and only the
Connected With
a Doctor table is
visible.

Pass

32 Clicking the Edit Profile
Details button.

1. Visit the
account page
(https://heartassi
st.net/account/)
by clicking
username button
in navigation bar
after logging
into patient

User is logged
into a Patient
account

N/A Change Profile
Details page is
loaded, shown
and rendered
along with form

Pass
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account.
2. Click the Edit
Profile Details
button.

33 Clicking the Change
Password button.

1. Visit the
account page
(https://heartassi
st.net/account/)
by clicking
username button
in navigation bar
after logging
into patient
account.
2. Click the
Change
Password
button.

User is logged
into a Patient
account

N/A Change
Password page
is loaded, shown
and rendered
along with form

Pass

Module: Doctor Account Page Test Module ID: UT-TC-005

Created by: Saurabh Varughese M. Kovoor Tested by: Saurabh Varughese M. Kovoor

Description

To test the account page for a doctor account on the platform.

Test
case
no.

Test scenario Steps Prerequisite Test data Expected result Status
(Pass/Fail)
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34 Load Doctor Account page
(https://heartassist.net/accou
nt/)

1. Log in to a
doctor account.
2. Press the
account name in
the menu bar or
enter
https://heartassis
t.net/account/ in
the search
engine

User is logged
into a Doctor
account.

N/A Doctor account
page is loaded,
shown and
rendered

Pass

35 Rendering text on page, and
their formatting including
the doctor account details
(first and last name and
account type), profile
picture, profile details,
contact details, other details
and edit profile and change
password buttons.

1. Visit the
account page
(https://heartassi
st.net/account/)
by clicking
username button
in navigation bar
after logging
into doctor
account.
2. View the
aforementioned
text on page,
and their
formatting, their
positioning,
sizing and
clarity.
3. Test at
different
viewport sizes
(360×640,

User is logged
into a Doctor
account.

N/A Text and
components of
the page should
be centered with
the viewport.
They should
follow
consistent sizing
as per the
Tailwind CSS
format. Ensure
these sizing and
formatting sizes
remain
consistent for
both mobile
(360×640),
tablet
(1366×768) and
desktop
viewports
(1920×1080)

Pass
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1366×768,
1920×1080),
using Google
Chrome
DevTools.

36 Rendering table of heart
disease risk trials.

1. Visit the
home page and
submit the heart
disease
prediction form
correctly and
obtaining a
result.
2. Visit the
account page
(https://heartassi
st.net/account/)
by clicking
username button
in navigation bar
after logging
into doctor
account.
3. Check the
heart disease
risk trials table
for new entry.
Check every
column of the
row to ensure all
cells are
populated and

User is logged
into an account
(Doctor).

Heart disease
prediction form
inputs.

Heart disease
risk trials table
is rendered and
displayed with
new row.
Columns of the
row has values,
so all cells are
populated with
same, consistent
and valid values.

Pass
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values are
consistent and
valid.

37 Rendering table of
Connected Patients.

1. Visit the
account page
(https://heartassi
st.net/account/)
by clicking
username button
in navigation bar
after logging
into doctor
account.
Preferably a
previously
registered
account with
connected
patients.
2. View the
Connected
Patients table.

User is logged
into an account
(Doctor). User
has connected
patients.

N/A Connected
Doctor table is
rendered and
displayed with
the doctor
account that
have been
registered with
the platform and
added as the
patient’s
connected
doctor. Columns
of the row has
values, so all
cells are
populated with
same, consistent
and valid values
corresponding to
that particular
doctors details.

Pass

38 Removing a Connected
Patient function

1. Visit the
account page
(https://heartassi
st.net/account/)
by clicking
username button

User is logged
into an account
(Doctor). User
has connected
patients.

N/A The particular
patient account
is removed from
the current user
account as a
connected

Pass

180

https://heartassist.net/admin/
https://heartassist.net/admin/


in navigation bar
after logging
into doctor
account.
2. View the
Connected
Patients table.
3. Press Remove
button for a
particular
connected
patient account.

patient. Account
page is reloaded,
with the patient
removed from
the Connected
Patients table.

39 Viewing a Connected
Patients Trial Results
Function

1. Visit the
account page
(https://heartassi
st.net/account/)
by clicking
username button
in navigation bar
after logging
into doctor
account.
2. View the
Connected
Patients table.
3. Press VIEW
TRIAL
RESULTS
button for a
particular
connected
patient account.

User is logged
into an account
(Doctor). User
has connected
patients.

N/A Account page is
reloaded, with
the particular
patient’s list of
heart disease
risk trials in a
tale.

Pass
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40 Clicking the Edit Profile
Details button.

1. Visit the
account page
(https://heartassi
st.net/account/)
by clicking
username button
in navigation bar
after logging
into doctor
account.
2. Click the Edit
Profile Details
button.

User is logged
into a Doctor
account

N/A Change Profile
Details page is
loaded, shown
and rendered
along with form

Pass

41 Clicking the Change
Password button.

1. Visit the
account page
(https://heartassi
st.net/account/)
by clicking
username button
in navigation bar
after logging
into doctor
account.
2. Click the
Change
Password
button.

User is logged
into a Doctor
account

N/A Change
Password page
is loaded, shown
and rendered
along with form

Pass

Module: Admin Account Page Test Module ID: UT-TC-006
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Created by: Saurabh Varughese M. Kovoor Tested by: Saurabh Varughese M. Kovoor

Description

To test the account page for a admin account on the platform.

Test
case
no.

Test scenario Steps Prerequisite Test data Expected result Status
(Pass/Fail)

42 Load Admin Account page
(https://heartassist.net/admin
/)

1. Log in to a
admin account.
2. Press the
account name in
the menu bar or
enter
https://heartassis
t.net/admin/ in
the search
engine

User is logged
into a Admin
account.

N/A Admin account
page and
dashboard is
loaded, shown
and rendered

Pass

43 Edit users’ data and remove
user accounts

1. Log in to a
admin account
at the admin
dashboard
https://heartassis
t.net/admin/
2. Use the
controls
available to edit
a particular user
accounts
information or

User is logged
into a Admin
account.

N/A The change to
the user account
will be reflected
after the admin
dashboard has
reloaded,
whether it is
with a new piece
of information
to a particular
attribute or if it
is a removal/

Pass
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delete the
account

deletion of the
user account on
the platform.

44 Edit patients’ data and
remove patient accounts

1. Log in to a
admin account
at the admin
dashboard
https://heartassis
t.net/admin/
2. Use the
controls
available to edit
a particular
patient account’s
information or
delete the
account

User is logged
into a Admin
account.

N/A The change to
the Patient
account will be
reflected after
the admin
dashboard has
reloaded,
whether it is
with a new piece
of information
to a particular
attribute or if it
is a removal/
deletion of the
patient account
on the platform.

Pass

45 Edit doctor’s data and
remove doctor accounts

1. Log in to a
admin account
at the admin
dashboard
https://heartassis
t.net/admin/
2. Use the
controls
available to edit
a particular
doctor account’s
information or

User is logged
into a Admin
account.

N/A The change to
the Doctor
account will be
reflected after
the admin
dashboard has
reloaded,
whether it is
with a new piece
of information
to a particular
attribute or if it

Pass
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delete the
account

is a removal/
deletion of the
doctor account
on the platform.

46 Edit heart disease prediction
object’s data and remove
them

1. Log in to a
admin account
at the admin
dashboard
https://heartassis
t.net/admin/
2. Use the
controls
available to edit
a particular heart
disease
prediction
object’s
information or
delete the object

User is logged
into a Admin
account.

N/A The change to
the heart disease
prediction object
will be reflected
after the admin
dashboard has
reloaded,
whether it is
with a new piece
of information
to a particular
attribute or if it
is a removal/
deletion of the
heart disease
prediction object
on the platform.

Pass

Module: Edit Profile/Change Password Page Test Module ID: UT-TC-007

Created by: Saurabh Varughese M. Kovoor Tested by: Saurabh Varughese M. Kovoor

Description

To test the edit profile details page and the change password page and their forms.

Test Test scenario Steps Prerequisite Test data Expected result Status
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case
no.

(Pass/Fail)

47 Load Edit Profile page
(https://heartassist.net/accou
nt/edit/)

1. Enter URL
https://heartassis
t.net/account/edi
t/ in the search
engine.

OR

1. Press the Edit
Profile Details
button in the
account page.

User is logged
into a Patient or
Doctor account.

N/A Edit Profile page
is loaded, shown
and rendered
along with the
form its labels
and fields

Pass

48 Load Change Password page
(https://heartassist.net/chang
e-password/)

1. Enter URL
https://heartassis
t.net/change-pas
sword/ in the
search engine.

OR

1. Press the
Change
Password button
in the account
page.

User is logged
into a Patient or
Doctor account

N/A Change
Password page
is loaded, shown
and rendered
along with the
form its labels
and fields

Pass

49 Rendering correct and
corresponding error
messages for form

1. Load Edit
Profile page
2. Enter form

User is logged
into a Patient or
Doctor account

Incorrect
account
credentials for

Correct and
corresponding
error message

Pass
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validation for edit profile
page. For instance,
username that already exists,
incorrect characters in
username, first name, last
name phone number, and
email fields, leaving out the
“@” symbol for the email
field and not following a
typical email address
structure, or leaving out
field entries to trigger error
messages.

inputs,
preferably
incorrect values
or outside range
to trigger form
validation error
message. For
instance
incorrect
characters in
username, first
name, last name
phone number,
and email fields.
Also, leaving
out the “@”
symbol for the
email field and
not following a
typical email
address
structure.
3. Test
submitting form
leaving out
certain fields.

profile details
form.

should be
displayed under
field with
incorrect input
entered. Error
message should
be rendered
correctly and
clearly.

50 Rendering correct and
corresponding error
messages for form
validation for change
password page. For instance,
password not matching

1. Load Change
Password page
2. Enter form
inputs,
preferably
incorrect values

User is logged
into a Patient or
Doctor account

Incorrect inputs
for change
password form.

Correct and
corresponding
error message
should be
displayed under
field with

Pass
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confirm password field, or
leaving out field entries to
trigger error messages.

or outside range
to trigger form
validation error
message. For
instance
password not
matching
confirm
password field.
3. Test
submitting form
leaving out
certain fields.

incorrect input
entered. Error
message should
be rendered
correctly and
clearly.

51 Testing submission of edit
profile details form and
correct redirection

1. Enter form
inputs correctly,
passing form
validation
2. Submit form
by clicking
Make Changes
button

User is logged
into a Patient or
Doctor account

Correct account
credentials for
profile details
form for
corresponding
account.

After entering
correct edit
profile details
form inputs and
passing form
validation, user
information
should be
updated and
redirected to
account page
showing new
updated
information.

Pass

52 Testing submission of
change password form and
correct redirection

1. Enter form
inputs correctly,
passing form
validation

User is logged
into a Patient or
Doctor account

Correct
password
entered for
change

After entering
correct change
password form
inputs and

Pass
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2. Submit form
by clicking
Change
Password button

password form
for
corresponding
account.

passing form
validation, user
password should
be updated and
redirected to
account page.
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Appendix C: Integration Test Cases

Module: Registration Pages and System Test Module ID: IT-TC-001

Created by: Saurabh Varughese M. Kovoor Tested by: Saurabh Varughese M. Kovoor

Description

To test the registration page and the individual patient register and doctor register pages and their forms and whether the data
entered and users created are reflected in the database.

Test
case
no.

Test scenario Steps Prerequisite Test data Expected result Status
(Pass/Fail)

1 Testing submission of
patient registration forms

1. Load Patient
Register page
2. Enter form
inputs correctly,
passing form
validation
3. Submit form
by clicking
CREATE button

N/A Correct account
credentials for
sign up form for
corresponding
account.

After entering
correct
registration form
inputs and
passing form
validation, user
should be
authenticated
and
automatically
logged in. New
User account
and new Patient
Account tied to
that User created
in the MongoDB
database. Can be
viewed using

Pass

190



MongoDB
Compass.

2 Testing submission of doctor
registration forms

1. Load Doctor
Register page
2. Enter form
inputs correctly,
passing form
validation
3. Submit form
by clicking
CREATE button

N/A Correct account
credentials for
sign up form for
corresponding
account.

After entering
correct
registration form
inputs and
passing form
validation, user
should be
authenticated
and
automatically
logged in. New
User account
and new Doctor
Account tied to
that User created
in the MongoDB
database. Can be
viewed using
MongoDB
Compass.

Pass

Module: Login Page Test Module ID: IT-TC-002

Created by: Saurabh Varughese M. Kovoor Tested by: Saurabh Varughese M. Kovoor

Description

To test the log in page and the login system for all users of the system (patient, doctor, and admin) and whether there is correct
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communication with the database to authorise users’ login requests.

Test
case
no.

Test scenario Steps Prerequisite Test data Expected result Status
(Pass/Fail)

3 Patient account logging into
account

1. Load login
page
2. Enter correct
username and
password
3. Click “Log
In” button

A registered
patient account
should exist in
the database and
be previously
registered/
authenticated.

Test patient
account
username and
password

Patient account
will be
authorised and
logged into the
system and
redirected to the
home page.
Showing that
connection to
database to
authorise user is
successful.

Pass

4 Doctor account logging into
account

1. Load login
page
2. Enter correct
username and
password
3. Click “Log
In” button

A registered
doctor account
should exist in
the database and
be previously
registered/
authenticated.

Test doctor
account
username and
password

Doctor account
will be
authorised and
logged into the
system and
redirected to the
home page.
Showing that
connection to
database to
authorise user is
successful.

Pass

5 Admin account logging into 1. Load login A registered Test admin Admin account Pass
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account page
2. Enter correct
username and
password
3. Click “Log
In” button

admin account
should exist in
the database and
be previously
registered/
authenticated.

account
username and
password

will be
authorised and
logged into the
system and
redirected to the
home page.
Showing that
connection to
database to
authorise user is
successful.

Module: Home and Account Page Functionalities Test Module ID: IT-TC-003

Created by: Saurabh Varughese M. Kovoor Tested by: Saurabh Varughese M. Kovoor

Description

To test the home page with the heart disease risk calculator form and the results page after the form validation has passed and inputs
have been processed by the ML model and whether the data updated to the database. Also to test the account page functionalities’
connection with the database, including the Connecting With a Doctor feature.

Test
case
no.

Test scenario Steps Prerequisite Test data Expected result Status
(Pass/Fail)

6 Saving new Heart Disease
Risk Trial to profile

1. Visit the
home page and
submit the heart
disease
prediction form
correctly and

User is logged
into an account
(Patient or
Doctor).

Heart disease
prediction form
inputs.

Heart disease
risk trials table
is rendered and
displayed with
new row.
Columns of the

Pass
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obtaining a
result.
2. Visit the
account page
(https://heartassi
st.net/account/)
by clicking
username button
in navigation bar
after logging
into account.
3. Check the
heart disease
risk trials table
for new entry.
Check every
column of the
row to ensure all
cells are
populated and
values are
consistent and
valid.

row has values,
so all cells are
populated with
same, consistent
and valid values.
New Heart
Disease
Prediction Form
object tied to
that User created
in the MongoDB
database. Can be
viewed using
MongoDB
Compass.

7 Connecting with a Doctor
function

1. Visit the
account page
(https://heartassi
st.net/account/)
by clicking
username button
in navigation bar
after logging
into patient

User is logged
into a Patient
account

N/A The particular
doctor account
is added as a
connected
doctor for this
current account.
Account page is
reloaded, with
the Connect

Pass
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account.
Preferably a
newly registered
account with no
connected
doctors.
2. View the
Connect with a
Doctor table.
3. Press Connect
button for any
doctor account
or row.

With a Doctor
table no longer
visible and only
the Connected
Doctor table is
visible. Patient’s
connectedDocto
r attribute is
updated in the
database as seen
using MongoDB
Compass.

8 Removing a Connected
Doctor function

1. Visit the
account page
(https://heartassi
st.net/account/)
by clicking
username button
in navigation bar
after logging
into patient
account.
2. View the
Connected
Doctor table.
3. Press Remove
button for the
connected
doctor account.

User is logged
into a Patient
account. Current
user has
previously
connected with a
doctor on the
platform.

N/A The particular
doctor account
is removed from
the current user
account as a
connected
doctor. Account
page is reloaded,
with the
Connected
Doctor table no
longer visible
and only the
Connected With
a Doctor table is
visible. Patient’s
connectedDocto
r attribute is
updated in the

Pass
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database as seen
using MongoDB
Compass.

9 Removing a Connected
Patient function

1. Visit the
account page
(https://heartassi
st.net/account/)
by clicking
username button
in navigation bar
after logging
into doctor
account.
2. View the
Connected
Doctor table.
3. Press Remove
button for the
connected
doctor account

User is logged
into an account
(Doctor). User
has connected
patients.

N/A The particular
patient account
is removed from
the current user
account as a
connected
patient. Account
page is reloaded,
with the patient
removed from
the Connected
Patients table.
Corresponding
Patient’s
connectedDocto
r attribute is
updated in the
database as seen
using MongoDB
Compass.

Pass

Module: Admin Dashboard Functionalities Test Module ID: IT-TC-004

Created by: Saurabh Varughese M. Kovoor Tested by: Saurabh Varughese M. Kovoor

Description
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To test the account page for a admin account on the platform and its functionalities and whether it is able to connect with the
database to perform updates.

Test
case
no.

Test scenario Steps Prerequisite Test data Expected result Status
(Pass/Fail)

10 Edit users’ data and remove
user accounts

1. Log in to a
admin account
at the admin
dashboard
https://heartassis
t.net/admin/
2. Use the
controls
available to edit
a particular user
accounts
information or
delete the
account

User is logged
into a Admin
account.

N/A The change to
the user account
will be reflected
after the admin
dashboard has
reloaded,
whether it is
with a new piece
of information
to a particular
attribute or if it
is a removal/
deletion of the
user account on
the platform.
Change of
information or
deletion of User
object applied in
database as seen
using MongoDB
Compass.

Pass

11 Edit patients’ data and
remove patient accounts

1. Log in to a
admin account
at the admin

User is logged
into a Admin
account.

N/A The change to
the Patient
account will be

Pass
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dashboard
https://heartassis
t.net/admin/
2. Use the
controls
available to edit
a particular
patient account’s
information or
delete the
account

reflected after
the admin
dashboard has
reloaded,
whether it is
with a new piece
of information
to a particular
attribute or if it
is a removal/
deletion of the
patient account
on the platform.
Change of
information or
deletion of
Patient object
applied in
database as seen
using MongoDB
Compass.

12 Edit doctor’s data and
remove doctor accounts

1. Log in to a
admin account
at the admin
dashboard
https://heartassis
t.net/admin/
2. Use the
controls
available to edit
a particular
doctor account’s

User is logged
into a Admin
account.

N/A The change to
the Doctor
account will be
reflected after
the admin
dashboard has
reloaded,
whether it is
with a new piece
of information
to a particular

Pass
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information or
delete the
account

attribute or if it
is a removal/
deletion of the
doctor account
on the platform.
Change of
information or
deletion of
Doctor object
applied in
database as seen
using MongoDB
Compass.

13 Edit heart disease prediction
object’s data and remove
them

1. Log in to a
admin account
at the admin
dashboard
https://heartassis
t.net/admin/
2. Use the
controls
available to edit
a particular heart
disease
prediction
object’s
information or
delete the object

User is logged
into a Admin
account.

N/A The change to
the heart disease
prediction object
will be reflected
after the admin
dashboard has
reloaded,
whether it is
with a new piece
of information
to a particular
attribute or if it
is a removal/
deletion of the
heart disease
prediction object
on the platform.
Change of
information or

Pass
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deletion of heart
disease
prediction object
applied in
database as seen
using MongoDB
Compass.

Module: Edit Profile/Change Password Page Test Module ID: IT-TC-005

Created by: Saurabh Varughese M. Kovoor Tested by: Saurabh Varughese M. Kovoor

Description

To test the edit profile details page and the change password page and their forms and whether the changes are implemented to the
database.

Test
case
no.

Test scenario Steps Prerequisite Test data Expected result Status
(Pass/Fail)

14 Testing submission of edit
profile details form and
correct redirection

1. Enter form
inputs correctly,
passing form
validation
2. Submit form
by clicking
Make Changes
button

User is logged
into a Patient or
Doctor account

Correct account
credentials for
profile details
form for
corresponding
account.

After entering
correct edit
profile details
form inputs and
passing form
validation, user
information
should be
updated and
redirected to
account page

Pass
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showing new
updated
information.
Change of
information of
User object
applied in
database as seen
using MongoDB
Compass.

15 Testing submission of
change password form and
correct redirection

User is logged
into a Patient or
Doctor account

User is logged
into a Patient or
Doctor account

Correct
password
entered for
change
password form
for
corresponding
account.

After entering
correct change
password form
inputs and
passing form
validation, user
password should
be updated and
redirected to
account page.
Change of
information of
User object
applied in
database as seen
using MongoDB
Compass.

Pass
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